scholarly journals Permafrost temperature and active-layer thickness of Yakutia with 0.5-degree spatial resolution for model evaluation

2013 ◽  
Vol 5 (2) ◽  
pp. 305-310 ◽  
Author(s):  
C. Beer ◽  
A. N. Fedorov ◽  
Y. Torgovkin

Abstract. Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5-degree grid cell size are estimated by assigning a probability density function at 0.001-degree spatial resolution. The gridded datasets can be accessed at the PANGAEA repository (doi:10.1594/PANGAEA.808240). Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the sporadic permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.

2013 ◽  
Vol 6 (1) ◽  
pp. 153-162 ◽  
Author(s):  
C. Beer ◽  
A. N. Fedorov ◽  
Y. Torgovkin

Abstract. Based on the map of landscapes and permafrost conditions in Yakutia (Merzlotno-landshaftnaya karta Yakutskoi0 ASSR, Gosgeodeziya SSSR, 1991), rasterized maps of permafrost temperature and active-layer thickness of Yakutia, East Siberia were derived. The mean and standard deviation at 0.5 degree grid cell size are estimated by assigning a probability density function at 0.001 degree spatial resolution. The gridded datasets can be accessed at the PANGAEA repository (doi:10.1594/PANGAEA.808240). Spatial pattern of both variables are dominated by a climatic gradient from north to south, and by mountains and the soil type distribution. Uncertainties are highest in mountains and in the isolated permafrost zone in the south. The maps are best suited as a benchmark for land surface models which include a permafrost module.


2013 ◽  
Vol 7 (2) ◽  
pp. 631-645 ◽  
Author(s):  
H. Park ◽  
J. Walsh ◽  
A. N. Fedorov ◽  
A. B. Sherstiukov ◽  
Y. Iijima ◽  
...  

Abstract. This study not only examined the spatiotemporal variations of active-layer thickness (ALT) in permafrost regions during 1948–2006 over the terrestrial Arctic regions experiencing climate changes, but also identified the associated drivers based on observational data and a simulation conducted by a land surface model (CHANGE). The focus on the ALT extends previous studies that have emphasized ground temperatures in permafrost regions. The Ob, Yenisey, Lena, Yukon, and Mackenzie watersheds are foci of the study. Time series of ALT in Eurasian watersheds showed generally increasing trends, while the increase in ALT in North American watersheds was not significant. However, ALT in the North American watersheds has been negatively anomalous since 1990 when the Arctic air temperature entered into a warming phase. The warming temperatures were not simply expressed to increases in ALT. Since 1990 when the warming increased, the forcing of the ALT by the higher annual thawing index (ATI) in the Mackenzie and Yukon basins has been offset by the combined effects of less insulation caused by thinner snow depth and drier soil during summer. In contrast, the increasing ATI together with thicker snow depth and higher summer soil moisture in the Lena contributed to the increase in ALT. The results imply that the soil thermal and moisture regimes formed in the pre-thaw season(s) provide memory that manifests itself during the summer. The different ALT anomalies between Eurasian and North American watersheds highlight increased importance of the variability of hydrological variables.


2019 ◽  
Vol 9 (1) ◽  
pp. 20-36 ◽  
Author(s):  
Filip Hrbáček ◽  
Daniel Nývlt ◽  
Kamil Láska ◽  
Michaela Kňažková ◽  
Barbora Kampová ◽  
...  

This study summarizes the current state of the active layer and permafrost research on James Ross Island. The analysis of climate parameters covers the reference period 2011–2017. The mean annual air temperature at the AWS-JGM site was -6.9°C (ranged from -3.9°C to -8.2°C). The mean annual ground temperature at the depth of 5 cm was -5.5°C (ranged from -3.3°C to -6.7°C) and it also reached -5.6°C (ranged from -4.0 to -6.8°C) at the depth of 50 cm. The mean daily ground temperature at the depth of 5 cm correlated moderately up to strongly with the air temperature depending on the season of the year. Analysis of the snow effect on the ground thermal regime confirmed a low insulating effect of snow cover when snow thickness reached up to 50 cm. A thicker snow accumulation, reaching at least 70 cm, can develop around the hyaloclastite breccia boulders where a well pronounced insulation effect on the near-surface ground thermal regime was observed. The effect of lithology on the ground physical properties and the active layer thickness was also investigated. Laboratory analysis of ground thermal properties showed variation in thermal conductivity (0.3 to 0.9 W m-1 K-1). The thickest active layer (89 cm) was observed on the Berry Hill slopes site, where the lowest thawing degree days index (321 to 382°C·day) and the highest value of thermal conductivity (0.9 W m-1 K-1) was observed. The clearest influence of lithological conditions on active layer thickness was observed on the CALM-S grid. The site comprises a sandy Holocene marine terrace and muddy sand of the Whisky Bay Formation. Surveying using a manual probe, ground penetrating radar, and an electromagnetic conductivity meter clearly showed the effect of the lithological boundary on local variability of the active layer thickness.


2011 ◽  
Vol 5 (5) ◽  
pp. 2465-2481 ◽  
Author(s):  
Q. Wu ◽  
T. Zhang ◽  
Y. Liu

Abstract. In this study, we investigated changes in active layer thickness (ALT) and permafrost temperatures at different depths using data from permafrost monitoring network along the Qinghai-Xizang (Tibet) Railway since 2005. Among sites, average ALT is about 3.1 m with a range from about 1.1 m to 4.9 m. From 2006 through 2010, ALT has increased at a rate of about 6.3 cm a−1. The mean rising rate of permafrost temperature at the depth of 6.0 m is about 0.02 °C a−1 estimated by linear regression using five years of data, and the mean rising rate of mean annual ground temperature (MAGT) at depth of zero amplitude is about 0.012 °C a−1. Changes for colder permafrost (MAGT < −1.0 °C) is greater than that for relatively warmer permafrost (MAGT > −1.0 °C). This is consistent with results observed in the Arctic and Subarctic.


2013 ◽  
Vol 7 (4) ◽  
pp. 1121-1137 ◽  
Author(s):  
Y. Zhang ◽  
X. Wang ◽  
R. Fraser ◽  
I. Olthof ◽  
W. Chen ◽  
...  

Abstract. Most spatial modelling of climate change impacts on permafrost has been conducted at half-degree latitude/longitude or coarser spatial resolution. At such coarse resolution, topographic effects on insolation cannot be considered accurately and the results are not suitable for land-use planning and ecological assessment. Here we mapped climate change impacts on permafrost from 1968 to 2100 at 10 m resolution using a process-based model for Ivvavik National Park, an Arctic region with complex terrain in northern Yukon, Canada. Soil and drainage conditions were defined based on ecosystem types, which were mapped using SPOT imagery. Leaf area indices were mapped using Landsat imagery and the ecosystem map. Climate distribution was estimated based on elevation and station observations, and the effects of topography on insolation were calculated based on slope, aspect and viewshed. To reduce computation time, we clustered climate distribution and topographic effects on insolation into discrete types. The modelled active-layer thickness and permafrost distribution were comparable with field observations and other studies. The map portrayed large variations in active-layer thickness, with ecosystem types being the most important controlling variable, followed by climate, including topographic effects on insolation. The results show deepening in active-layer thickness and progressive degradation of permafrost, although permafrost will persist in most of the park during the 21st century. This study also shows that ground conditions and climate scenarios are the major sources of uncertainty for high-resolution permafrost mapping.


2012 ◽  
Vol 49 (8) ◽  
pp. 925-937 ◽  
Author(s):  
Yu Zhang ◽  
Junhua Li ◽  
Xiping Wang ◽  
Wenjun Chen ◽  
Wendy Sladen ◽  
...  

Most spatial modelling of permafrost distribution and dynamics has been conducted at half-degree latitude/longitude or coarser resolution. Such coarse results are difficult to use for land managers and ecologists. Here we mapped permafrost distribution at 30 m × 30 m resolution for a region in the northwest Hudson Bay Lowlands using a process-based model. Land-cover types and leaf area indices were derived from Landsat imagery; peat thickness was estimated from elevation based on field measurements; and climate data were interpolated from station observations. The modelled active-layer thickness and permafrost extent compared well with field observations, demonstrating that modelling and mapping permafrost at a high spatial resolution is practical for terrains such as these lowlands. The map portrayed large variations in active-layer thickness, with land-cover type and peat thickness being the most important controlling variables. The modelled active-layer thickness on average increased by 37% during the twentieth century due to increases in air temperature and precipitation, and permafrost disappeared in some southern areas. The spatial scale of the permafrost maps developed in this study is close to that of the ecosystem and landscape features; therefore, the results are useful for land management and ecosystem assessment.


2012 ◽  
Vol 6 (6) ◽  
pp. 4599-4636
Author(s):  
Y. Zhang ◽  
X. Wang ◽  
R. Fraser ◽  
I. Olthof ◽  
W. Chen ◽  
...  

Abstract. Most spatial modelling of climate change impacts on permafrost has been conducted at half-degree latitude/longitude or coarser spatial resolution. At such coarse resolution, topographic effects on insolation cannot be considered accurately and the modelling results are difficult to use for land managers and ecologists. Here we mapped climate change impacts on permafrost from 1968 to 2100 at 10 m resolution using a process-based model for Ivvavik National Park, a region with complex terrain in northern Yukon, Canada. Soil and drainage conditions were defined based on ecosystem types, which were mapped using SPOT imagery, a digital elevation model and field observations. Leaf area indices were mapped using Landsat imagery and the ecosystem map. Climate distribution was estimated based on elevation and station observations, and the effects of topography on insolation were estimated based on slope, aspect and viewshed. To reduce computation time, we clustered climate distribution and topographic effects on insolation into discrete types. The modelled active-layer thickness and permafrost distribution were comparable with field observations and other studies, demonstrating that it is practical to model and map climate change impacts on permafrost at high spatial resolution for areas with complex terrain. The map portrayed large variations in active-layer thickness, with ecosystem types being the most important controlling variable, followed by climate, including topographic effects on insolation. This study also shows that climate scenarios and ground conditions are the major sources of uncertainty for high resolution permafrost mapping.


Sign in / Sign up

Export Citation Format

Share Document