scholarly journals V3Geo: A cloud-based repository for virtual 3D models in geoscience

2021 ◽  
Author(s):  
Simon John Buckley ◽  
John Anthony Howell ◽  
Nicole Naumann ◽  
Conor Lewis ◽  
Magda Chmielewska ◽  
...  

Abstract. V3Geo is a cloud-based repository for publishing virtual 3D models in geoscience. The system allows storage, search and visualisation of models typically acquired using techniques such as photogrammetry and laser scanning. The platform has been developed to handle models at the range of scales typically used by geoscientists, from microscopic, hand samples and fossils through to outcrop sections covering metres to tens of kilometres. The cloud storage system serves the models to a purpose-built 3D web viewer. Models are tiled to ensure efficient streaming over the internet. The web viewer allows 3D models to be interactively explored without the need for specialist software to be installed. A measurement tool enables users to measure simple dimensions, such as widths, thicknesses, fault throws and more. V3Geo allows very large models comprising multiple sections and is designed to include additional interpretation layers. The specific focus on geoscience data is supported by defined metadata and a classification schema. Public and private storage are available, and public models are assigned Creative Commons licenses to govern content usage. This paper presents V3Geo as a sustainable resource for the geoscience community, including the motivation, main characteristics, and features. Example usage scenarios are highlighted: from undergraduate geology teaching, supporting virtual geoscience education, and preparing virtual field trips based on V3Geo models. Finally, best practise guidelines for preparing 3D model contributions for publication on V3Geo are included as an Appendix.

2021 ◽  
Author(s):  
Simon Buckley ◽  
John Howell ◽  
Nicole Naumann ◽  
Conor Lewis ◽  
Kari Ringdal ◽  
...  

<p><strong>V3Geo </strong>is a cloud-based repository for virtual 3D models in geoscience, allowing storage, searching tools and visualisation of 3D models typically acquired through photogrammetry (structure-from-motion), laser scanning or other laboratory-based 3D modelling methods. The platform has been developed to store and access 3D models at the range of scales and applications required by geoscientists – from microscopic, hand samples and fossils through to outcrop sections covering metres to tens of kilometres. A 3D web viewer efficiently streams the model data over the Internet connection, allowing 3D models to be explored interactively. A measurement tool makes it possible for user to measure simple dimensions, such as widths, thicknesses, fault throws and more. V3Geo differs from other services in that it allows very large models (consisting of multiple sections), is designed to include additional interpretations in future versions, and focuses specifically on geoscience through metadata and a classification schema.</p><p>The initial version of V3Geo was released in 2020 in reaction to the COVID-19 pandemic, with the aim of providing virtual tools in a time of cancelled field excursions, field-based courses and fieldwork. The repository has been accepting community contributions, based on a guideline for preparing and submitting high quality 3D datasets. Contributions are subject to a technical review to ensure underlying quality and reliability for scientific and professional usage. Model description pages give an overview of the datasets, with references, and datasets themselves are assigned Creative Commons licences. The 3D viewer can be embedded in webpages, making it easy to include V3Geo models in virtual teaching resources. V3Geo allows increased accessibility to field localities when travel or mobility is restricted, as well as providing the foundation for virtual field trips. The database currently includes around 200 virtual 3D models from around the world, and will continue to develop and grow, aiming to become a valuable resource for the geoscience community. Future updates will include tools to facilitate upload and technical review, interpretations and Digital Object Identifiers.</p>


2020 ◽  
Author(s):  
Riccardo Rocca

<p>This presentation describes a workflow to enhance the 3D model of a geological outcrop cut across by a regional strike-slip fault located in the Venezuelan Andes.</p><p>This fault (Boconó Fault) has been active since the Early Holocene time and has affected the landscape by displacing the rivers course and the geometry of ancient glacial moraines.</p><p>One of these moraines (Los Zerpa) was studied in detail in 1983 by geologist C. Schubert, who described its evolution with a series of hand drawn panels.</p><p>In 2015 the same area was acquired by the author with a drone survey and rendered as a digital 3D model. More recently the same model has been improved by adding also the interpretation made in the 80’s, adapted to 3D in the form of geometrical elements (lineaments and surfaces) and animations showing the different stages of evolution.</p><p>The fault model can now be publicly accessed over the internet and the users can observe and animate its evolution in 3D and understand the geological processes more intuitively (https://riccardorocca.github.io/home/Los_Zerpa.html).</p><p>This result has been achieved by editing the original model with free software which is more typically used for computer games, namely "Blender" (a 3D editor) and "Sketchfab" (a publishing platform for 3D models). Furthermore, the “Sketchfab” display can be programmed in Javascript, adding widgets that allow the users to interact with the scene by hiding/showing/moving specific elements of the model.</p><p>This workflow is proposed as an example that can be applied to other 3D models of geological faults and other geological features, so that the geological concepts can be represented more intuitively and made accessible to a large audience. With these improvements the models would be a more valuable support to, for instance, published papers and virtual field-trips.</p>


Prospects ◽  
2008 ◽  
Vol 38 (4) ◽  
pp. 527-539
Author(s):  
Luis Patron ◽  
Robert A. Ellis ◽  
Brendan F. D. Barrett

Author(s):  
Qian Yu ◽  
Petra Helmholz ◽  
David Belton

In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.


Author(s):  
Qian Yu ◽  
Petra Helmholz ◽  
David Belton

In recent years, 3D city models are in high demand by many public and private organisations, and the steadily growing capacity in both quality and quantity are increasing demand. The quality evaluation of these 3D models is a relevant issue both from the scientific and practical points of view. In this paper, we present a method for the quality evaluation of 3D building models which are reconstructed automatically from terrestrial laser scanning (TLS) data based on an attributed building grammar. The entire evaluation process has been performed in all the three dimensions in terms of completeness and correctness of the reconstruction. Six quality measures are introduced to apply on four datasets of reconstructed building models in order to describe the quality of the automatic reconstruction, and also are assessed on their validity from the evaluation point of view.


2021 ◽  
Author(s):  
Madeline S. Marshall ◽  
Melinda C. Higley

Abstract. Field experiences are a critical component of undergraduate geoscience education; however, traditional onsite field experiences are not always practical due to accessibility, and the popularity of alternative modes of learning in higher education is increasing. One way to support student access to field experiences is through virtual field trips, implemented either independently or in conjunction with in-person field trips. We created a virtual field trip (VFT) to Grand Ledge, a regionally important suite of sedimentary outcrops in central lower Michigan, USA. This VFT undertakes all stages of a field project, from question development and detailed observation through data collection to interpretation. The VFT was implemented in undergraduate Sedimentation and Stratigraphy courses at two different liberal arts institutions, with one version of the VFT conducted in-person and the other online. The VFT was presented from a locally hosted website and distributed through an online learning platform. Students completed a series of activities using field data in the form of outcrop photos, virtual 3D models of outcrops and hand samples, and photos of thin sections. Student products included annotated field notes, a stratigraphic column, a collaborative stratigraphic correlation, and a final written reflection. VFT assessment demonstrated that students successfully achieved the inquiry-oriented student learning outcomes and student reflection responses provide anecdotal evidence that the field experience was comparable to field geology onsite. This VFT is an example of successful student learning in an upper-level Sedimentation and Stratigraphy course via virtual field experience with an emphasis on local geology.


Sign in / Sign up

Export Citation Format

Share Document