scholarly journals Global aerosol modeling with MADE3 (v3.0) in EMAC (based on v2.53): model description and evaluation

2019 ◽  
Vol 12 (1) ◽  
pp. 541-579 ◽  
Author(s):  
J. Christopher Kaiser ◽  
Johannes Hendricks ◽  
Mattia Righi ◽  
Patrick Jöckel ◽  
Holger Tost ◽  
...  

Abstract. Recently, the aerosol microphysics submodel MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, third generation) was introduced as a successor to MADE and MADE-in. It includes nine aerosol species and nine lognormal modes to represent aerosol particles of three different mixing states throughout the aerosol size spectrum. Here, we describe the implementation of the most recent version of MADE3 into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, including a detailed evaluation of a 10-year aerosol simulation with MADE3 as part of EMAC. We compare simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of aerosol mass mixing ratio and number concentration vertical profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Furthermore, we describe and apply a new evaluation method, which allows a comparison of model output to size-resolved electron microscopy measurements of particle composition. Although there are indications that fine-mode particle deposition may be underestimated by the model, we obtained satisfactory agreement with the observations. Remaining deviations are of similar size to those identified in other global aerosol model studies. Thus, MADE3 can be considered ready for application within EMAC. Due to its detailed representation of aerosol mixing state, it is especially useful for simulating wet and dry removal of aerosol particles, aerosol-induced formation of cloud droplets and ice crystals as well as aerosol–radiation interactions. Besides studies on these fundamental processes, we also plan to use MADE3 for a reassessment of the climate effects of anthropogenic aerosol perturbations.

2018 ◽  
Author(s):  
J. Christopher Kaiser ◽  
Johannes Hendricks ◽  
Mattia Righi ◽  
Patrick Jöckel ◽  
Holger Tost ◽  
...  

Abstract. Recently, the aerosol microphysics submodel MADE3 was introduced as a successor to MADE and MADE-in. It includes nine aerosol species and nine lognormal modes to represent aerosol particles of three different mixing states throughout the aeroso size spectrum. Here we describe the implementation of the most recent version of MADE3 into the atmospheric chemistry general circulation model EMAC, including a detailed evaluation of a ten-year aerosol simulation with MADE3 as part of EMAC. We compare simulation output to station network measurements of near-surface aerosol component mass concentrations, to airborne measurements of aerosol mass mixing ratio and number concentration vertical profiles, to ground-based and airborne measurements of particle size distributions, and to station network and satellite measurements of aerosol optical depth. Furthermore, we describe and apply a new evaluation method, which allows a comparison of model output to size-resolved electron microscopy measurements of particle composition. Although there are indications that fine mode particle deposition may be underestimated by the model, we obtained satisfactory agreement with the observations. Remaining deviations are of similar size as those identified in other global aerosol model studies. Thus, MADE3 can be considered ready for application within EMAC. Due to its detailed representation of aerosol mixing state, it is especially useful for simulating wet and dry removal of aerosol particles, aerosol-induced formation of cloud droplets and ice crystals as well as aerosol-radiation interactions. Besides studies on these fundamental processes, we also plan to use MADE3 for a reassessment of the climate effects of anthropogenic aerosol perturbations.


2008 ◽  
Vol 8 (19) ◽  
pp. 5899-5917 ◽  
Author(s):  
A. Kerkweg ◽  
P. Jöckel ◽  
A. Pozzer ◽  
H. Tost ◽  
R. Sander ◽  
...  

Abstract. This is the first article of a series presenting a detailed analysis of bromine chemistry simulated with the atmospheric chemistry general circulation model ECHAM5/MESSy. Release from sea salt is an important bromine source, hence the model explicitly calculates aerosol chemistry and phase partitioning for coarse mode aerosol particles. Many processes including chemical reaction rates are influenced by the particle size distribution, and aerosol associated water strongly affects the aerosol pH. Knowledge of the aerosol pH is important as it determines the aerosol chemistry, e.g., the efficiency of sulphur oxidation and bromine release. Here, we focus on the simulated sea salt aerosol size distribution and the coarse mode aerosol pH. A comparison with available field data shows that the simulated aerosol distributions agree reasonably well within the range of measurements. In spite of the small number of aerosol pH measurements and the uncertainty in its experimental determination, the simulated aerosol pH compares well with the observations. The aerosol pH ranges from alkaline aerosol in areas of strong production down to pH-values of 1 over regions of medium sea salt production and high levels of gas phase acids, mostly polluted regions over the oceans in the Northern Hemisphere.


2020 ◽  
Vol 13 (9) ◽  
pp. 3817-3838
Author(s):  
Xiao Lu ◽  
Lin Zhang ◽  
Tongwen Wu ◽  
Michael S. Long ◽  
Jun Wang ◽  
...  

Abstract. Chemistry plays an indispensable role in investigations of the atmosphere; however, many climate models either ignore or greatly simplify atmospheric chemistry, limiting both their accuracy and their scope. We present the development and evaluation of the online global atmospheric chemical model BCC-GEOS-Chem v1.0, coupling the GEOS-Chem chemical transport model (CTM) as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model (BCC-AGCM). The GEOS-Chem atmospheric chemistry component includes detailed tropospheric HOx–NOx–volatile organic compounds–ozone–bromine–aerosol chemistry and online dry and wet deposition schemes. We then demonstrate the new capabilities of BCC-GEOS-Chem v1.0 relative to the base BCC-AGCM model through a 3-year (2012–2014) simulation with anthropogenic emissions from the Community Emissions Data System (CEDS) used in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The model captures well the spatial distributions and seasonal variations in tropospheric ozone, with seasonal mean biases of 0.4–2.2 ppbv at 700–400 hPa compared to satellite observations and within 10 ppbv at the surface to 500 hPa compared to global ozonesonde observations. The model has larger high-ozone biases over the tropics which we attribute to an overestimate of ozone chemical production. It underestimates ozone in the upper troposphere which is likely due either to the use of a simplified stratospheric ozone scheme or to biases in estimated stratosphere–troposphere exchange dynamics. The model diagnoses the global tropospheric ozone burden, OH concentration, and methane chemical lifetime to be 336 Tg, 1.16×106 molecule cm−3, and 8.3 years, respectively, which is consistent with recent multimodel assessments. The spatiotemporal distributions of NO2, CO, SO2, CH2O, and aerosol optical depth are generally in agreement with satellite observations. The development of BCC-GEOS-Chem v1.0 represents an important step for the development of fully coupled earth system models (ESMs) in China.


2008 ◽  
Vol 8 (2) ◽  
pp. 7217-7262 ◽  
Author(s):  
A. Kerkweg ◽  
P. Jöckel ◽  
A. Pozzer ◽  
H. Tost ◽  
R. Sander ◽  
...  

Abstract. This is the first article of a series presenting a detailed analysis of bromine chemistry simulated with the atmospheric chemistry general circulation model ECHAM5/MESSy. Release from sea salt is an important bromine source, hence the model explicitly calculates aerosol chemistry and phase partitioning for coarse mode aerosol particles. Many processes including chemical reaction rates are influenced by the particle size distribution, and aerosol associated water strongly affects the aerosol pH. Knowledge of the aerosol pH is important as it determines the aerosol chemistry, e.g., the efficiency of sulphur oxidation and bromine release. Here, we focus on the simulated sea salt aerosol size distribution and the coarse mode aerosol pH. A comparison with available field data shows that the simulated aerosol distributions agree reasonably well within the range of measurements. In spite of the small number of aerosol pH measurements and the uncertainty in its experimental determination, the simulated aerosol pH compares well with the observations. The aerosol pH ranges from alkaline aerosol in areas of strong production down to pH values of 1 over regions of medium sea salt production and high levels of gas phase acids, mostly polluted regions over the oceans in the northern hemisphere.


2019 ◽  
Author(s):  
Xiao Lu ◽  
Lin Zhang ◽  
Tongwen Wu ◽  
Michael S. Long ◽  
Jun Wang ◽  
...  

Abstract. Chemistry plays an indispensable role in investigations of the atmosphere, however, many climate models either ignore or greatly simplify atmospheric chemistry, limiting both their accuracy and their scope. We present the development and evaluation of the online global atmospheric chemical model BCC-GEOS-Chem v1.0, coupling the GEOS-Chem chemical transport model (CTM) as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model (BCC-AGCM). The GEOS-Chem atmospheric chemistry component includes detailed tropospheric HOx-NOx-VOC-ozone-bromine-aerosol chemistry and online dry and wet deposition schemes. We then demonstrate the new capabilities of BCC-GEOS-Chem v1.0 relative to the base BCC-AGCM model through a three-year (2012–2014) simulation with anthropogenic emissions from the Community Emissions Data System (CEDS) used in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The model well captures the spatial distributions and seasonal variations in tropospheric ozone, with seasonal mean biases of 0.4–2.2 ppbv at 700–400 hPa compared to satellite observations and within 10 ppbv at the surface-500 hPa compared to global ozonesonde observations. The model has larger high ozone biases over the tropics which we attribute to an overestimate of ozone chemical production. It underestimates ozone in the upper troposphere which likely due to either the use of a simplified stratospheric ozone scheme and/or to biases in estimated stratosphere-troposphere exchange dynamics. The model diagnoses the global tropospheric ozone burden, OH concentration, and methane chemical lifetime to be 336 Tg, 1.16 × 106 molecule cm−3, and 8.3 years, respectively, consistent with recent multi-model assessments. The spatiotemporal distributions of NO2, CO, SO2, CH2O, and aerosols optical depth are generally in agreement with satellite observations. The development of BCC-GEOS-Chem v1.0 represents an important step for the development of fully coupled earth system models (ESMs) in China.


2017 ◽  
Vol 10 (9) ◽  
pp. 3359-3378 ◽  
Author(s):  
Christoph Kleinschmitt ◽  
Olivier Boucher ◽  
Slimane Bekki ◽  
François Lott ◽  
Ulrich Platt

Abstract. Stratospheric aerosols play an important role in the climate system by affecting the Earth's radiative budget as well as atmospheric chemistry, and the capabilities to simulate them interactively within global models are continuously improving. It is important to represent accurately both aerosol microphysical and atmospheric dynamical processes because together they affect the size distribution and the residence time of the aerosol particles in the stratosphere. The newly developed LMDZ-S3A model presented in this article uses a sectional approach for sulfate particles in the stratosphere and includes the relevant microphysical processes. It allows full interaction between aerosol radiative effects (e.g. radiative heating) and atmospheric dynamics, including e.g. an internally generated quasi-biennial oscillation (QBO) in the stratosphere. Sulfur chemistry is semi-prescribed via climatological lifetimes. LMDZ-S3A reasonably reproduces aerosol observations in periods of low (background) and high (volcanic) stratospheric sulfate loading, but tends to overestimate the number of small particles and to underestimate the number of large particles. Thus, it may serve as a tool to study the climate impacts of volcanic eruptions, as well as the deliberate anthropogenic injection of aerosols into the stratosphere, which has been proposed as a method of geoengineering to abate global warming.


2011 ◽  
Vol 4 (4) ◽  
pp. 3047-3065
Author(s):  
R. S. Smith

Abstract. FAMOUS is an ocean-atmosphere general circulation model of low resolution, based on version 4.5 of the UK MetOffice Unified Model. Here we update the model description to account for changes in the model as it is used in the CMIP5 EMIC model intercomparison project (EMICmip) and a number of other studies. Most of these changes correct errors found in the code. The EMICmip version of the model (XFXWB) has a better-conserved water budget and additional cooling in some high latitude areas, but otherwise has a similar climatology to previous versions of FAMOUS. A variant of XFXWB is also described, with changes to the dynamics at the top of the model which improve the model climatology (XFHCC).


2016 ◽  
Author(s):  
Simone Dietmüller ◽  
Patrick Jöckel ◽  
Holger Tost ◽  
Markus Kunze ◽  
Cathrin Gellhorn ◽  
...  

Abstract. The Modular Earth Submodel System (MESSy) provides an interface to couple submodels to a basemodel via a highly flexible data management facility (Jöckel et al., 2010). In the present paper we present the four new radiation related submodels RAD, AEROPT, CLOUDOPT and ORBIT. The submodel RAD (with shortwave radiation scheme RAD_FUBRAD) simulates the radiative transfer, the submodel AEROPT calculates the aerosol optical properties, the submodel CLOUDOPT calculates the cloud optical properties, and the submodel ORBIT is responsible for Earth orbit calculations. These submodels are coupled via the standard MESSy infrastructure and are largely based on the original radiation scheme of the general circulation model ECHAM5, however, expanded with additional features. These features comprise, among others, user-friendly and flexibly controllable (by namelists) on-line radiative forcing calculations by multiple diagnostic calls of the radiation routines. With this, it is now possible to calculate radiative forcing (instantaneous as well as stratosphere adjusted) of various greenhouse gases simultaneously in only one simulation, as well as the radiative forcing of cloud perturbations. Examples of on-line radiative forcing calculations in the ECHAM/MESSy Atmospheric Chemistry (EMAC) model are presented.


2007 ◽  
Vol 7 (1) ◽  
pp. 127-202 ◽  
Author(s):  
A. Pozzer ◽  
P. Jöckel ◽  
H. Tost ◽  
R. Sander ◽  
L. Ganzeveld ◽  
...  

Abstract. The atmospheric-chemistry general circulation model ECHAM5/MESSy1 is evaluated with observations of different organic ozone precursors. This study continues a prior analysis which focused primarily on the representation of atmospheric dynamics and ozone. We use the results of the same reference simulation and apply a statistical analysis using data from numerous field campaigns. The results serve as a basis for future improvements of the model system. ECHAM5/MESSy1 generally reproduces the spatial distribution and the seasonal cycle of carbon monoxide (CO) very well. However, for the background in the northern hemisphere we obtain a negative bias (mainly due to an underestimation of emissions from fossil fuel combustion), and in the high latitude southern hemisphere a yet unexplained positive bias. The model results agree well with observations of alkanes, whereas severe problems in the simulation of alkenes are present. For oxygenated compounds the results are ambiguous: The model results are in good agreement with observations of formaldehyde, but systematic biases are present for methanol and acetone. The discrepancies between the model results and the observations are explained (partly) by means of sensitivity studies.


Sign in / Sign up

Export Citation Format

Share Document