scholarly journals The Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP): Experimental design and forcing input data

Author(s):  
Davide Zanchettin ◽  
Myriam Khodri ◽  
Claudia Timmreck ◽  
Matthew Toohey ◽  
Anja Schmidt ◽  
...  

Abstract. The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Climate Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the model intercomparison project on the climate response to volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol dataset for each experiment to eliminate differences in the applied volcanic forcing, and defines a set of initial conditions to determine how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically-forced responses of the coupled ocean-atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input datasets to be used.

2016 ◽  
Vol 9 (8) ◽  
pp. 2701-2719 ◽  
Author(s):  
Davide Zanchettin ◽  
Myriam Khodri ◽  
Claudia Timmreck ◽  
Matthew Toohey ◽  
Anja Schmidt ◽  
...  

Abstract. The enhancement of the stratospheric aerosol layer by volcanic eruptions induces a complex set of responses causing global and regional climate effects on a broad range of timescales. Uncertainties exist regarding the climatic response to strong volcanic forcing identified in coupled climate simulations that contributed to the fifth phase of the Coupled Model Intercomparison Project (CMIP5). In order to better understand the sources of these model diversities, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has defined a coordinated set of idealized volcanic perturbation experiments to be carried out in alignment with the CMIP6 protocol. VolMIP provides a common stratospheric aerosol data set for each experiment to minimize differences in the applied volcanic forcing. It defines a set of initial conditions to assess how internal climate variability contributes to determining the response. VolMIP will assess to what extent volcanically forced responses of the coupled ocean–atmosphere system are robustly simulated by state-of-the-art coupled climate models and identify the causes that limit robust simulated behavior, especially differences in the treatment of physical processes. This paper illustrates the design of the idealized volcanic perturbation experiments in the VolMIP protocol and describes the common aerosol forcing input data sets to be used.


2018 ◽  
Vol 11 (7) ◽  
pp. 2581-2608 ◽  
Author(s):  
Claudia Timmreck ◽  
Graham W. Mann ◽  
Valentina Aquila ◽  
Rene Hommel ◽  
Lindsay A. Lee ◽  
...  

Abstract. The Stratospheric Sulfur and its Role in Climate (SSiRC) Interactive Stratospheric Aerosol Model Intercomparison Project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulfur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA-MIP is to constrain and improve interactive stratospheric aerosol models and reduce uncertainties in the stratospheric aerosol forcing by comparing results of standardized model experiments with a range of observations. In this paper we present four co-ordinated inter-model experiments designed to investigate key processes which influence the formation and temporal development of stratospheric aerosol in different time periods of the observational record. The Background (BG) experiment will focus on microphysics and transport processes under volcanically quiescent conditions, when the stratospheric aerosol is controlled by the transport of aerosols and their precursors from the troposphere to the stratosphere. The Transient Aerosol Record (TAR) experiment will explore the role of small- to moderate-magnitude volcanic eruptions, anthropogenic sulfur emissions, and transport processes over the period 1998–2012 and their role in the warming hiatus. Two further experiments will investigate the stratospheric sulfate aerosol evolution after major volcanic eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) experiment will focus on the uncertainty in the initial emission of recent large-magnitude volcanic eruptions, while the Pinatubo Emulation in Multiple models (PoEMS) experiment will provide a comprehensive uncertainty analysis of the radiative forcing from the 1991 Mt Pinatubo eruption.


2020 ◽  
Author(s):  
Claudia Timmreck ◽  
Matthew Toohey ◽  
Davide Zanchettin

<p>Several uncertainties affect the simulation of the climatic response to strong volcanic forcing by coupled climate models, which primarily stem from model specificities and intrinsic variability. To better understand the relative contribution of both sources of uncertainties, the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP) has been initiated as part of the CMIP6 protocol. VolMIP has defined a coordinated set of idealized volcanic perturbation experiments with prescription of the same volcanic forcing and coherent sampling of initial conditions to be performed to the different participating coupled climate models. However, as the VolMIP effort focuses on comparison across different models, an open question remains about how different configurations of the same model affect the comparability of results.</p><p> Here, we present first results of CMIP6 VolMIP simulations performed with the MPIESM1.2 in two resolutions. The low resolution (LR) configuration employs an atmospheric resolution of T63 (~200 km), and nominal ocean resolution of 1.5°. The high resolution (HR) configuration employs twice of the horizontal resolution of its atmospheric component (T127 ~100 km)   with a spontaneously generated QBO, and an eddy-permitting ocean resolution of  0.4°.</p><p>In this contribution we illustrate results from the volc-pinatubo experiments, which focus on the assessment of uncertainty in the seasonal-to-interannual climatic response to an idealized 1991 Pinatubo-like eruption, and from the volc-long experiments, which are designed to investigate the long-term dynamical climate response to volcanic eruptions. We compare responses of different climate variables, e.g. near-surface air temperature, precipitation and sea ice on global and regional scale.  Special emphasis will be placed on the volcanic impact on the tropical hydrological cycle.</p>


2021 ◽  
Author(s):  
Thomas Aubry ◽  
Anja Schmidt ◽  
Alix Harrow ◽  
Jeremy Walton ◽  
Jane Mulcahy ◽  
...  

<p>Reconstructions of volcanic aerosol forcing and its climatic impacts are undermined by uncertainties in both the models used to build these reconstructions as well as the proxy and observational records used to constrain those models. Reducing these uncertainties has been a priority and in particular, several modelling groups have developed interactive stratospheric aerosol models. Provided with an initial volcanic injection of sulfur dioxide, these models can interactively simulate the life cycle and optical properties of sulfate aerosols, and their effects on climate. In contrast, most climate models that took part in the Coupled Model Intercomparison Project Phase 5 and 6 (CMIP6) directly prescribe perturbations in atmospheric optical properties associated with an eruption. However, before the satellite era, the volcanic forcing dataset used for CMIP6 mostly relies on a relatively simple aerosol model and a volcanic sulfur inventory derived from ice-cores, both of which have substantial associated uncertainties.</p><p>In this study, we produced a new set of historical simulations using the UK Earth System Model UKESM1, with interactive stratospheric aerosol capability (referred to as interactive runs hereafter) instead of directly prescribing the CMIP6 volcanic forcing dataset as was done for CMIP6 (standard runs, hereafter). We used one of the most recent volcanic sulfur inventories as input for the interactive runs, in which aerosol properties are consistent with the model chemistry, microphysics and atmospheric components. We analyzed how the stratospheric aerosol optical depth, the radiative forcing and the climate response to volcanic eruptions differed between interactive and standard runs, and how these compare to observations and proxy records. In particular, we investigate in detail the differences in the response to the large-magnitude Krakatoa 1883 eruption between the two sets of runs. We also discuss differences for the 1979-2015 period where the forcing data in standard runs is directly constrained from satellite observations. Our results shed new light on uncertainties affecting the reconstruction of past volcanic forcing and highlight some of the benefits and disadvantages of using interactive stratospheric aerosol capabilities instead of a unique prescribed volcanic forcing dataset in CMIP’s historical runs.</p>


2018 ◽  
Author(s):  
Claudia Timmreck ◽  
Graham W. Mann ◽  
Valentina Aquila ◽  
Rene Hommel ◽  
Lindsay A. Lee ◽  
...  

Abstract. The Stratospheric Sulfur and its Role in Climate (SSiRC) interactive stratospheric aerosol model intercomparison project (ISA-MIP) explores uncertainties in the processes that connect volcanic emission of sulphur gas species and the radiative forcing associated with the resulting enhancement of the stratospheric aerosol layer. The central aim of ISA-MIP is to constrain and improve interactive stratospheric aerosol models and reduce uncertainties in the stratospheric aerosol forcing by comparing results of standardized model experiments with a range of observations. In this paper we present 4 co-ordinated inter-model experiments designed to investigate key processes which influence the formation and temporal development of stratospheric aerosol in different time periods of the observational record. The Background (BG) experiment will focus on microphysics and transport processes under volcanically quiescent conditions, when the stratospheric aerosol is controlled by the transport of aerosols and their precursors from the troposphere to the stratosphere. The Transient Aerosol Record (TAR) experiment will explore the role of small- to moderate-magnitude volcanic eruptions, anthropogenic sulphur emissions and transport processes over the period 1998–2012 and their role in the warming hiatus. Two further experiments will investigate the stratospheric sulphate aerosol evolution after major volcanic eruptions. The Historical Eruptions SO2 Emission Assessment (HErSEA) experiment will focus on the uncertainty in the initial emission of recent large-magnitude volcanic eruptions, while the Pinatubo Emulation in Multiple models (PoEMS) experiment will provide a comprehensive uncertainty analysis of the radiative forcing from the 1991 Mt. Pinatubo eruption.


2017 ◽  
Vol 10 (2) ◽  
pp. 889-901 ◽  
Author(s):  
Daniel J. Lunt ◽  
Matthew Huber ◽  
Eleni Anagnostou ◽  
Michiel L. J. Baatsen ◽  
Rodrigo Caballero ◽  
...  

Abstract. Past warm periods provide an opportunity to evaluate climate models under extreme forcing scenarios, in particular high ( >  800 ppmv) atmospheric CO2 concentrations. Although a post hoc intercomparison of Eocene ( ∼  50  Ma) climate model simulations and geological data has been carried out previously, models of past high-CO2 periods have never been evaluated in a consistent framework. Here, we present an experimental design for climate model simulations of three warm periods within the early Eocene and the latest Paleocene (the EECO, PETM, and pre-PETM). Together with the CMIP6 pre-industrial control and abrupt 4 ×  CO2 simulations, and additional sensitivity studies, these form the first phase of DeepMIP – the Deep-time Model Intercomparison Project, itself a group within the wider Paleoclimate Modelling Intercomparison Project (PMIP). The experimental design specifies and provides guidance on boundary conditions associated with palaeogeography, greenhouse gases, astronomical configuration, solar constant, land surface processes, and aerosols. Initial conditions, simulation length, and output variables are also specified. Finally, we explain how the geological data sets, which will be used to evaluate the simulations, will be developed.


2021 ◽  
Vol 21 (2) ◽  
pp. 1143-1158 ◽  
Author(s):  
Larry W. Thomason ◽  
Mahesh Kovilakam ◽  
Anja Schmidt ◽  
Christian von Savigny ◽  
Travis Knepp ◽  
...  

Abstract. An analysis of multiwavelength stratospheric aerosol extinction coefficient data from the Stratospheric Aerosol and Gas Experiment II and III/ISS instruments is used to demonstrate a coherent relationship between the perturbation in extinction coefficient in an eruption's main aerosol layer and the wavelength dependence of that perturbation. This relationship spans multiple orders of magnitude in the aerosol extinction coefficient of stratospheric impact of volcanic events. The relationship is measurement-based and does not rely on assumptions about the aerosol size distribution. We note limitations on this analysis including that the presence of significant amounts of ash in the main sulfuric acid aerosol layer and other factors may significantly modulate these results. Despite these limitations, the findings suggest an avenue for improving aerosol extinction coefficient measurements from single-channel observations such as the Optical Spectrograph and Infrared Imager System as they rely on a prior assumptions about particle size. They may also represent a distinct avenue for the comparison of observations with interactive aerosol models used in global climate models and Earth system models.


2018 ◽  
Vol 11 (7) ◽  
pp. 2633-2647 ◽  
Author(s):  
Timofei Sukhodolov ◽  
Jian-Xiong Sheng ◽  
Aryeh Feinberg ◽  
Bei-Ping Luo ◽  
Thomas Peter ◽  
...  

Abstract. We evaluate how the coupled aerosol–chemistry–climate model SOCOL-AERv1.0 represents the influence of the 1991 eruption of Mt. Pinatubo on stratospheric aerosol properties and atmospheric state. The aerosol module is coupled to the radiative and chemical modules and includes comprehensive sulfur chemistry and microphysics, in which the particle size distribution is represented by 40 size bins with radii spanning from 0.39 nm to 3.2 µm. SOCOL-AER simulations are compared with satellite and in situ measurements of aerosol parameters, temperature reanalyses, and ozone observations. In addition to the reference model configuration, we performed series of sensitivity experiments looking at different processes affecting the aerosol layer. An accurate sedimentation scheme is found to be essential to prevent particles from diffusing too rapidly to high and low altitudes. The aerosol radiative feedback and the use of a nudged quasi-biennial oscillation help to keep aerosol in the tropics and significantly affect the evolution of the stratospheric aerosol burden, which improves the agreement with observed aerosol mass distributions. The inclusion of van der Waals forces in the particle coagulation scheme suggests improvements in particle effective radius, although other parameters (such as aerosol longevity) deteriorate. Modification of the Pinatubo sulfur emission rate also improves some aerosol parameters, while it worsens others compared to observations. Observations themselves are highly uncertain and render it difficult to conclusively judge the necessity of further model reconfiguration. The model revealed problems in reproducing aerosol sizes above 25 km and also in capturing certain features of the ozone response. Besides this, our results show that SOCOL-AER is capable of predicting the most important global-scale atmospheric effects following volcanic eruptions, which is also a prerequisite for an improved understanding of solar geoengineering effects from sulfur injections to the stratosphere.


2021 ◽  
Author(s):  
Ilaria Quaglia ◽  
Christoph Brühl ◽  
Sandip Dhomse ◽  
Henning Franke ◽  
Anton Laakso ◽  
...  

<p>Large magnitude tropical volcanic eruptions emit sulphur dioxide and other gases directly into the stratosphere, creating a long-lived volcanic aerosol cloud which scatter incoming solar radiation, absorbs outgoing terrestrial radiation, and can strongly affect the composition of the stratosphere.</p><p>Such major volcanic enhancements of the stratospheric aerosol layer have strong “direct effects” on climate via these influences on radiative transfer, primarily surface cooling via the reduced insolation, but also have a range of indirect effects, due to the volcanic aerosol cloud’s effects on stratospheric circulation, dynamics and chemistry.</p><p>In this study, we investigate the 3 largest volcanic enhancements to the stratospheric aerosol layer in the last 100 years (Mt Agung 1963; Mt El Chichón 1982; Mt Pinatubo 1991), comparing co-ordinated simulations within the so-called HErSEA experiments (Historical Eruptions SO2 Emission Assessment) several national climate modelling centres carried out for the model intercomparison project ISA-MIP.</p><p>The HErSEA experiment saw participating models performing interactive stratospheric aerosol simulations of each of the volcanic aerosol clouds with common upper-, mid- and lower-estimate amounts and injection heights of sulfur dioxide, in order to better understand known differences among modelling studies for which initial emission gives best agreement with observations. </p><p>First, we compare results of several models HErSEA simulations with a range of observations, with the aim to find where there is agreement between the models and where there are differences, at the different initial sulfur injection amount and altitude distribution.</p><p>In this way, we could understand the differences and limitations in the mechanisms that controls the dynamical, microphysical and chemical processes of stratospheric aerosol layer.</p>


2021 ◽  
Author(s):  
Zebedee Nicholls ◽  

<p>Reduced-complexity climate models form part of the climate model hierarchy and are increasingly relied upon at the science-policy interface. Historically, evaluation of reduced-complexity climate models has been limited to a number of independent studies. Here we present the reduced-complexity model intercomparison project (RCMIP), the first systematic, community-organised evaluation of reduced-complexity climate models. We introduce the motivation behind RCMIP, where to find information about it and key insights arising from its first two scientific outputs. Future phases of RCMIP will examine specific behaviour of reduced-complexity climate models in more detail, for example their carbon cycle response. We are particulalry keen to hear from users of reduced-complexity models to discuss their use cases, how we can evaluate our models in the way most relevant to them and where key model improvements can be made.</p>


Sign in / Sign up

Export Citation Format

Share Document