scholarly journals Neodymium isotopes in the ocean model of the Community Earth System Model (CESM1.3)

2017 ◽  
Author(s):  
Sifan Gu ◽  
Zhengyu Liu ◽  
Alexandra Jahn ◽  
Johannes Rempfer ◽  
Jiaxu Zhang ◽  
...  

Abstract. Neodymium (Nd) isotope ratio (εNd) is a quasi-conservative water mass tracer and has been used increasingly as paleoclimate proxy to indicate the past evolution of ocean circulation. However, there are many uncertainties in interpreting εNd reconstructions. For the purposes of direct comparison between climate models and proxy reconstructions, we implement Nd isotopes (143Nd and 144Nd) in the ocean model of the Community Earth System Model (CESM). Two versions of Nd tracers are implemented: one is the "abiotic" Nd in which the particle fields are prescribed as the particle climatology generated by the marine ecosystem module of the CESM under present day forcing; the other is the "biotic" Nd that is coupled with the marine ecosystem module. Under present day climate forcing, our model is able to simulate both Nd concentrations and εNd in good agreement with available observations. Also, Nd concentration and εNd in our model show similar sensitivities to the total boundary source and the ratio between particle related Nd and dissolved Nd as in previous modeling study (Rempfer et al., 2011). Therefore, our Nd-enabled ocean model provides a promising tool to study past changes in ocean and climate.

2017 ◽  
Vol 10 (12) ◽  
pp. 4723-4742 ◽  
Author(s):  
Sifan Gu ◽  
Zhengyu Liu

Abstract. The sediment 231Pa ∕ 230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model–data comparison and to improve our understanding of the sediment 231Pa ∕ 230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the fully coupled implementation of the scavenging behavior of 231Pa and 230Th with the active marine ecosystem module (particle-coupled: hereafter p-coupled), another form of 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate (particle-fixed: hereafter p-fixed). The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of ocean circulation. Under present-day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and the sediment 231Pa ∕ 230Th activity ratio in good agreement with available observations. In addition, in response to freshwater forcing, the p-coupled and p-fixed sediment 231Pa ∕ 230Th activity ratios behave similarly over large areas of low productivity on long timescales, but can differ substantially in some regions of high productivity and on short timescales, indicating the importance of biological productivity in addition to ocean transport. Therefore, our model provides a potentially powerful tool to help the interpretation of sediment 231Pa ∕ 230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.


2017 ◽  
Author(s):  
Sifan Gu ◽  
Zhengyu Liu

Abstract. Sediment 231Pa/230Th activity ratio is emerging as an important proxy for deep ocean circulation in the past. In order to allow for a direct model-data comparison and to improve our understanding of sediment 231Pa/230Th activity ratio, we implement 231Pa and 230Th in the ocean component of the Community Earth System Model (CESM). In addition to the biotic 231Pa and 230Th that is fully coupled with the active marine ecosystem module, another form of abiotic 231Pa and 230Th have also been implemented with prescribed particle flux fields of the present climate. The comparison of the two forms of 231Pa and 230Th helps to isolate the influence of the particle fluxes from that of circulation. Under present day climate forcing, our model is able to simulate water column 231Pa and 230Th activity and sediment 231Pa/230Th activity ratio in good agreement with available observations. For past climate, our model is able to simulate a comparable magnitude of the change of sediment 231Pa/230Th activity ratio between the state with and without active AMOC in reconstruction. In addition, in hosing experiments, the biotic and abiotic sediment 231Pa/230Th activity ratios behave similarly over large areas of low productivity, but can differ substantially in some regions of high productivity, indicating the importance of biological productivity in addition to physical circulation. Therefore, our model provides a potentially powerful tool to help our interpretation of sediment 231Pa/230Th reconstructions and to improve our understanding of past ocean circulation and climate changes.


2013 ◽  
Vol 26 (23) ◽  
pp. 9291-9312 ◽  
Author(s):  
J. Keith Moore ◽  
Keith Lindsay ◽  
Scott C. Doney ◽  
Matthew C. Long ◽  
Kazuhiro Misumi

The authors compare Community Earth System Model results to marine observations for the 1990s and examine climate change impacts on biogeochemistry at the end of the twenty-first century under two future scenarios (Representative Concentration Pathways RCP4.5 and RCP8.5). Late-twentieth-century seasonally varying mixed layer depths are generally within 10 m of observations, with a Southern Ocean shallow bias. Surface nutrient and chlorophyll concentrations exhibit positive biases at low latitudes and negative biases at high latitudes. The volume of the oxygen minimum zones is overestimated. The impacts of climate change on biogeochemistry have similar spatial patterns under RCP4.5 and RCP8.5, but perturbation magnitudes are larger under RCP8.5. Increasing stratification leads to weaker nutrient entrainment and decreased primary and export production (>30% over large areas). The global-scale decreases in primary and export production scale linearly with the increases in mean sea surface temperature. There are production increases in the high nitrate, low chlorophyll (HNLC) regions, driven by lateral iron inputs from adjacent areas. The increased HNLC export partially compensates for the reductions in non-HNLC waters (~25% offset). Stabilizing greenhouse gas emissions and climate by the end of this century (as in RCP4.5) will minimize the changes to nutrient cycling and primary production in the oceans. In contrast, continued increasing emission of CO2 (as in RCP8.5) will lead to reduced productivity and significant modifications to ocean circulation and biogeochemistry by the end of this century, with more drastic changes beyond the year 2100 as the climate continues to rapidly warm.


2020 ◽  
Vol 13 (2) ◽  
pp. 717-734 ◽  
Author(s):  
Nicholas A. Davis ◽  
Sean M. Davis ◽  
Robert W. Portmann ◽  
Eric Ray ◽  
Karen H. Rosenlof ◽  
...  

Abstract. Specified dynamics (SD) schemes relax the circulation in climate models toward a reference meteorology to simulate historical variability. These simulations are widely used to isolate the dynamical contributions to variability and trends in trace gas species. However, it is not clear if trends in the stratospheric overturning circulation are properly reproduced by SD schemes. This study assesses numerous SD schemes and modeling choices in the Community Earth System Model (CESM) Whole Atmosphere Chemistry Climate Model (WACCM) to determine a set of best practices for reproducing interannual variability and trends in tropical stratospheric upwelling estimated by reanalyses. Nudging toward the reanalysis meteorology as is typically done in SD simulations does not accurately reproduce lower-stratospheric upwelling trends present in the underlying reanalysis. In contrast, nudging to anomalies from the climatological winds or anomalies from the zonal-mean winds and temperatures better reproduces trends in lower-stratospheric upwelling, possibly because these schemes do not disrupt WACCM's climatology. None of the schemes substantially alter the structure of upwelling trends – instead, they make the trends more or less AMIP-like. An SD scheme's performance in simulating the acceleration of the shallow branch of the mean meridional circulation from 1980 to 2017 hinges on its ability to simulate the downward shift of subtropical lower-stratospheric wave momentum forcing. Key to this is not nudging the zonal-mean temperature field. Gravity wave momentum forcing, which drives a substantial fraction of the upwelling in WACCM, cannot be constrained by nudging and presents an upper limit on the performance of these schemes.


2018 ◽  
Vol 9 (3) ◽  
pp. 1045-1062 ◽  
Author(s):  
Andrés Navarro ◽  
Raúl Moreno ◽  
Francisco J. Tapiador

Abstract. ESMs (Earth system models) are important tools that help scientists understand the complexities of the Earth's climate. Advances in computing power have permitted the development of increasingly complex ESMs and the introduction of better, more accurate parameterizations of processes that are too complex to be described in detail. One of the least well-controlled parameterizations involves human activities and their direct impact at local and regional scales. In order to improve the direct representation of human activities and climate, we have developed a simple, scalable approach that we have named the POPEM module (POpulation Parameterization for Earth Models). This module computes monthly fossil fuel emissions at grid-point scale using the modeled population projections. This paper shows how integrating POPEM parameterization into the CESM (Community Earth System Model) enhances the realism of global climate modeling, improving this beyond simpler approaches. The results show that it is indeed advantageous to model CO2 emissions and pollutants directly at model grid points rather than using the same mean value globally. A major bonus of this approach is the increased capacity to understand the potential effects of localized pollutant emissions on long-term global climate statistics, thus assisting adaptation and mitigation policies.


2021 ◽  
Vol 31 (06) ◽  
pp. 2130017
Author(s):  
Thomas E. Mulder ◽  
Heiko Goelzer ◽  
Fred W. Wubs ◽  
Henk A. Dijkstra

There is now much geological evidence that the Earth was fully glaciated during several periods in the geological past (about 700[Formula: see text]Myr ago) and attained a so-called Snowball Earth (SBE) state. Additional support for this idea has come from climate models of varying complexity that show transitions to SBE states and undergo hysteresis under changes in solar radiation. In this paper, we apply large-scale bifurcation analyses to a novel, fully-implicit Earth System Model of Intermediate Complexity (I-EMIC) to study SBE transitions. The I-EMIC contains a primitive equation ocean model, a model for atmospheric heat and moisture transport, a sea ice component and formulations for the adjustment of albedo over snow and ice. With the I-EMIC, high-dimensional branches of the SBE bifurcation diagram are obtained through parameter continuation. We are able to identify stable and unstable equilibria and uncover an intricate bifurcation structure associated with the ice-albedo feedback. Moreover, large-scale linear stability analyses are performed near major bifurcations, revealing the spatial nature of destabilizing perturbations.


2020 ◽  
Author(s):  
Yaman Liu ◽  
Xinyi Dong ◽  
Minghuai Wang ◽  
Louisa K. Emmons ◽  
Yawen Liu ◽  
...  

Abstract. Organic aerosol (OA) has been considered as one of the most important uncertainties in climate modeling due to the complexity in presenting its chemical production and depletion mechanisms. To better understand the capability of climate models and probe into the associated uncertainties in simulating OA, we evaluate the Community Earth System Model version 2.1 (CESM2.1) configured with the Community Atmosphere Model version 6 (CAM6) with comprehensive tropospheric and stratospheric chemistry representation (CAM6-Chem), through a long-term simulation (1988–2019) with observations collected from multiple datasets in the United States. We find that CESM generally reproduces the inter-annual variation and seasonal cycle of OA mass concentration at surface layer with correlation of 0.40 as compared to ground observations, and systematically overestimates (69 %) in summer and underestimates (−19 %) in winter. Through a series of sensitivity simulations, we reveal that modeling bias is primarily related to the dominant fraction of monoterpene-formed secondary organic aerosol (SOA), and a strong positive correlation of 0.67 is found between monoterpene emission and modeling bias in eastern US during summer. In terms of vertical profile, the model prominently underestimates OA and monoterpene concentrations by 37–99 % and 82–99 % respectively in the upper air (> 500 m) as validated against aircraft observations. Our study suggests that the current Volatility Basis Set (VBS) scheme applied in CESM might be parameterized with too high monoterpene SOA yields which subsequently result in strong SOA production near emission source area. We also find that the model has difficulty in reproducing the decreasing trend of surface OA in southeast US, probably because of employing pure gas VBS to represent isoprene SOA which is in reality mainly formed through multiphase chemistry, thus the influence of aerosol acidity and sulfate particle change on isoprene SOA formation has not been fully considered in the model. This study reveals the urgent need to improve the SOA modeling in climate models.


2013 ◽  
Vol 10 (5) ◽  
pp. 8505-8559 ◽  
Author(s):  
K. Misumi ◽  
K. Lindsay ◽  
J. K. Moore ◽  
S. C. Doney ◽  
F. O. Bryan ◽  
...  

Abstract. We investigated the simulated iron budget in ocean surface waters in the 1990s and 2090s using the Community Earth System Model version 1 and the Representative Concentration Pathway 8.5 future CO2 emission scenario. We assumed that exogenous iron inputs did not change during the whole simulation period; thus, iron budget changes were attributed solely to changes in ocean circulation and mixing in response to projected global warming. The model simulated the major features of ocean circulation and dissolved iron distribution for the present climate reasonably well. Detailed iron budget analysis revealed that roughly 70% of the iron supplied to surface waters in high-nutrient, low-chlorophyll (HNLC) regions is contributed by ocean circulation and mixing processes, but the dominant supply mechanism differed in each HNLC region: vertical mixing in the Southern Ocean, upwelling in the eastern equatorial Pacific, and deposition of iron-bearing dust in the subarctic North Pacific. In the 2090s, our model projected an increased iron supply to HNLC surface waters, even though enhanced stratification was predicted to reduce iron entrainment from deeper waters. This unexpected result could be attributed largely to changes in the meridional overturning and gyre-scale circulations that intensified the advective supply of iron to surface waters, especially in the eastern equatorial Pacific. The simulated primary and export productions in the 2090s decreased globally by 6% and 13%, respectively, whereas in the HNLC regions, they increased by 11% and 6%, respectively. Roughly half of the elevated production could be attributed to the intensified iron supply. The projected ocean circulation and mixing changes are consistent with recent observations of responses to the warming climate and with other Coupled Model Intercomparison Project model projections. We conclude that future ocean circulation and mixing changes will likely elevate the iron supply to HNLC surface waters and will potentially buffer future reductions in ocean productivity. External inputs of iron to the oceans are likely to be modified with climate change. Future work must incorporate robust estimates of these processes affecting the marine iron cycle.


Sign in / Sign up

Export Citation Format

Share Document