scholarly journals Accounting for Carbon and Nitrogen interactions in the Global Terrestrial Ecosystem Model ORCHIDEE (trunk version, rev 4999): multi-scale evaluation of gross primary production

Author(s):  
Nicolas Vuichard ◽  
Palmira Messina ◽  
Sebastiaan Luyssaert ◽  
Bertrand Guenet ◽  
Sönke Zaehle ◽  
...  

Abstract. Nitrogen is an essential element controlling ecosystem carbon (C) productivity and its response to climate change and atmospheric [CO2] increase. This study presents the evaluation – focussing on gross primary production (GPP) – of a new version of the ORCHIDEE model that gathers the representation of the nitrogen cycle and of its interactions with the carbon cycle from the OCN model and the most recent developments from the ORCHIDEE trunk version. We quantify the model skills at 78 Fluxnet sites by simulating the observed mean seasonal cycle, daily mean flux variations, and annual mean average GPP flux for grasslands and forests. Accounting for carbon-nitrogen interactions does not substantially change the main skills of ORCHIDEE, except for the site-to-site annual mean GPP variations, for which the version with carbon-nitrogen interactions is in better agreement to observations. However, the simulated GPP response to idealized [CO2] enrichment simulations is highly sensitive to whether or not carbon-nitrogen interactions are accounted for. Doubling of the atmospheric [CO2] induces an increase of the GPP, but the site-averaged GPP response to CO2 increase projected by the model version with carbon-nitrogen interactions is half of the increase projected by the version without carbon-nitrogen interactions. This model's differentiated response has important consequences for the transpiration rate, which is on average 50 mm yr−1 lower with the version with carbon-nitrogen interactions. Simulated annual GPP for northern, tropical and southern latitudes shows good agreement with the observation-based MTE-GPP product for present-day conditions. An attribution experiment making use of this new version of ORCHIDEE for the time period 1860–2016 suggests that global GPP has increased by 50 %, the main driver being the enrichment of land in reactive nitrogen (through deposition and fertilization), followed by the [CO2] increase. Based on our factorial experiment and sensitivity analysis, we conclude that if carbon-nitrogen interactions are accounted for, the functional responses of ORCHIDEE r4999 better agrees with current understanding of photosynthesis than when the carbon-nitrogen interactions are not accounted for, and that carbon-nitrogen interactions are essential in understanding global terrestrial ecosystem productivity.

2019 ◽  
Vol 12 (11) ◽  
pp. 4751-4779 ◽  
Author(s):  
Nicolas Vuichard ◽  
Palmira Messina ◽  
Sebastiaan Luyssaert ◽  
Bertrand Guenet ◽  
Sönke Zaehle ◽  
...  

Abstract. Nitrogen is an essential element controlling ecosystem carbon (C) productivity and its response to climate change and atmospheric [CO2] increase. This study presents the evaluation – focussing on gross primary production (GPP) – of a new version of the ORCHIDEE model that gathers the representation of the nitrogen cycle and of its interactions with the carbon cycle from the OCN model and the most recent developments from the ORCHIDEE trunk version. We quantify the model skills at 78 FLUXNET sites by simulating the observed mean seasonal cycle, daily mean flux variations, and annual mean average GPP flux for grasslands and forests. Accounting for carbon–nitrogen interactions does not substantially change the main skills of ORCHIDEE, except for the site-to-site annual mean GPP variations, for which the version with carbon–nitrogen interactions is in better agreement with observations. However, the simulated GPP response to idealised [CO2] enrichment simulations is highly sensitive to whether or not carbon–nitrogen interactions are accounted for. Doubling of the atmospheric [CO2] induces an increase in the GPP, but the site-averaged GPP response to a CO2 increase projected by the model version with carbon–nitrogen interactions is half of the increase projected by the version without carbon–nitrogen interactions. This model's differentiated response has important consequences for the transpiration rate, which is on average 50 mm yr−1 lower with the version with carbon–nitrogen interactions. Simulated annual GPP for northern, tropical and southern latitudes shows good agreement with the observation-based MTE-GPP (model tree ensemble gross primary production) product for present-day conditions. An attribution experiment making use of this new version of ORCHIDEE for the time period 1860–2016 suggests that global GPP has increased by 50 %, the main driver being the enrichment of land in reactive nitrogen (through deposition and fertilisation), followed by the [CO2] increase. Based on our factorial experiment and sensitivity analysis, we conclude that if carbon–nitrogen interactions are accounted for, the functional responses of ORCHIDEE r4999 better agree with the current understanding of photosynthesis than when the carbon–nitrogen interactions are not accounted for and that carbon–nitrogen interactions are essential in understanding global terrestrial ecosystem productivity.


2015 ◽  
Vol 19 (16) ◽  
pp. 1-21 ◽  
Author(s):  
Chang Liao ◽  
Qianlai Zhuang

Abstract Droughts dramatically affect plant production of global terrestrial ecosystems. To date, quantification of this impact remains a challenge because of the complex plant physiological and biochemical processes associated with drought. Here, this study incorporates a drought index into an existing process-based terrestrial ecosystem model to estimate the drought impact on global plant production for the period 2001–10. Global Moderate Resolution Imaging Spectroradiometer (MODIS) gross primary production (GPP) data products are used to constrain model parameters and verify the model algorithms. The verified model is then applied to evaluate the drought impact. The study indicates that droughts will reduce GPP by 9.8 g C m−2 month−1 during the study period. On average, drought reduces GPP by 10% globally. As a result, the global GPP decreased from 106.4 to 95.9 Pg C yr−1 while the global net primary production (NPP) decreased from 54.9 to 49.9 Pg C yr−1. This study revises the estimation of the global NPP and suggests that the future quantification of the global carbon budget of terrestrial ecosystems should take the drought impact into account.


2010 ◽  
Vol 7 (11) ◽  
pp. 3517-3530 ◽  
Author(s):  
F. St-Hilaire ◽  
J. Wu ◽  
N. T. Roulet ◽  
S. Frolking ◽  
P. M. Lafleur ◽  
...  

Abstract. We developed the McGill Wetland Model (MWM) based on the general structure of the Peatland Carbon Simulator (PCARS) and the Canadian Terrestrial Ecosystem Model. Three major changes were made to PCARS: (1) the light use efficiency model of photosynthesis was replaced with a biogeochemical description of photosynthesis; (2) the description of autotrophic respiration was changed to be consistent with the formulation of photosynthesis; and (3) the cohort, multilayer soil respiration model was changed to a simple one box peat decomposition model divided into an oxic and anoxic zones by an effective water table, and a one-year residence time litter pool. MWM was then evaluated by comparing its output to the estimates of net ecosystem production (NEP), gross primary production (GPP) and ecosystem respiration (ER) from 8 years of continuous measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada (index of agreement [dimensionless]: NEP = 0.80, GPP = 0.97, ER = 0.97; systematic RMSE [g C m−2 d−1]: NEP = 0.12, GPP = 0.07, ER = 0.14; unsystematic RMSE: NEP = 0.15, GPP = 0.27, ER = 0.23). Simulated moss NPP approximates what would be expected for a bog peatland, but shrub NPP appears to be underestimated. Sensitivity analysis revealed that the model output did not change greatly due to variations in water table because of offsetting responses in production and respiration, but that even a modest temperature increase could lead to converting the bog from a sink to a source of CO2. General weaknesses and further developments of MWM are discussed.


2008 ◽  
Vol 5 (2) ◽  
pp. 1689-1725 ◽  
Author(s):  
F. St-Hilaire ◽  
J. Wu ◽  
N. T. Roulet ◽  
S. Frolking ◽  
P. M. Lafleur ◽  
...  

Abstract. We developed the McGill Wetland Model (MWM) based on the general structure of the Peatland Carbon Simulator (PCARS) and the Canadian Terrestrial Ecosystem Model. Three major changes were made to PCARS: 1. the light use efficiency model of photosynthesis was replaced with a biogeochemical description of photosynthesis; 2. the description of autotrophic respiration was changed to be consistent with the formulation of photosynthesis; and 3. the cohort, multilayer soil respiration model was changed to a simple one box peat decomposition model divided into an oxic and anoxic zones by an effective water table, and a one-year residence time litter pool. MWM was then evaluated by comparing its output to the estimates of net ecosystem production (NEP), gross primary production (GPP) and ecosystem respiration (ER) from 8 years of continuous measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada (index of agreement [dimensionless]: NEP=0.80, GPP=0.97, ER=0.97; systematic RMSE [g C m−2 d−1]: NEP=0.12, GPP=0.07, ER=0.14; unsystematic RMSE [g C m−2 d−1]: NEP=0.15, GPP=0.27, ER=0.23). Simulated moss NPP approximates what would be expected for a bog peatland, but shrub NPP appears to be underestimated. Sensitivity analysis revealed that the model output did not change greatly due to variations in water table because of offsetting responses in production and respiration, but that even modest temperature increases could lead to converting the bog from a sink to a source of CO2. General weaknesses and further developments of MWM are discussed.


2012 ◽  
Vol 16 (5) ◽  
pp. 1-22 ◽  
Author(s):  
Min Chen ◽  
Qianlai Zhuang

Abstract The authors use a spatially explicit parameterization method and the Terrestrial Ecosystem Model (TEM) to quantify the carbon dynamics of forest ecosystems in the conterminous United States. Six key parameters that govern the rates of carbon and nitrogen dynamics in TEM are selected for calibration. Spatially explicit data for carbon and nitrogen pools and fluxes are used to calibrate the six key parameters to more adequately account for the spatial heterogeneity of ecosystems in estimating regional carbon dynamics. The authors find that a spatially explicit parameterization results in vastly different carbon exchange rates relative to a parameterization conducted for representative ecosystem sites. The new parameterization method estimates that the net ecosystem production (NEP), the annual gross primary production (GPP), and the net primary production (NPP) of the regional forest ecosystems are 61% (0.02 Pg C; 1 Pg = 1015 g) higher and 2% (0.11 Pg C) and 19% (0.45 Pg C) lower, respectively, than the values obtained using the traditional parameterization method for the period 1948–2000. The estimated vegetation carbon and soil organic carbon pool sizes are 51% (18.73 Pg C) lower and 29% (7.40 Pg C) higher. This study suggests that, to more adequately quantify regional carbon dynamics, spatial data for carbon and nitrogen pools and fluxes should be developed and used with the spatially explicit parameterization method.


2014 ◽  
Vol 2014 ◽  
pp. 1-17 ◽  
Author(s):  
Shufen Pan ◽  
Hanqin Tian ◽  
Shree R. S. Dangal ◽  
Zhiyun Ouyang ◽  
Bo Tao ◽  
...  

There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1) ground-based field measurements, (2) satellite-based observations, and (3) process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP) and net primary production (NPP). To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM) at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.


Sign in / Sign up

Export Citation Format

Share Document