scholarly journals Solver for Hydrologic Unstructured Domain (SHUD): Numerical modeling of watershed hydrology with the finite volume method

2020 ◽  
Author(s):  
Lele Shu ◽  
Paul A. Ullrich ◽  
Christopher J. Duffy

Abstract. Hydrological modeling is an essential strategy for understanding natural flows, particularly where observations are lacking in either space or time, or where topographic roughness leads to a disconnect in the characteristic timescales of overland and groundwater flow. Consequently, significant opportunities remain for the development of extensible modeling systems that operate robustly across regions. Towards the development of such a robust hydrological modeling system, this paper introduces the Solver for Hydrological Unstructured Domain (SHUD), an integrated multi-process, multi-scale, multi-timestep hydrological model, in which hydrological processes are fully coupled using the Finite Volume Method. The SHUD integrates overland flow, snow accumulation/melting, evapotranspiration, subsurface and groundwater flow, and river routing, while realistically capturing the physical processes in a watershed. The SHUD incorporates one-dimension unsaturated flow, two-dimension groundwater flow, and river channels connected with hillslopes via overland flow and baseflow. This paper introduces the design of SHUD, from the conceptual and mathematical description of hydrological processes in a watershed to computational structures. To demonstrate and validate the model performance, we employ three hydrological experiments: the V-Catchment experiment, Vauclin's experiment, and a study of the Cache Creek Watershed in northern California, USA. Possible applications of then SHUD model include hydrological studies from the hillslope scale to regional scale, water resource and stormwater management, and coupling research with related fields such as limnology, agriculture, geochemistry, geomorphology, water quality, and ecology, climatic and landuse change. In general, SHUD is a valuable scientific tool for any modeling task involving simulating and understanding the hydrological response.

2020 ◽  
Vol 13 (6) ◽  
pp. 2743-2762 ◽  
Author(s):  
Lele Shu ◽  
Paul A. Ullrich ◽  
Christopher J. Duffy

Abstract. Hydrologic modeling is an essential strategy for understanding and predicting natural flows, particularly where observations are lacking in either space or time or where complex terrain leads to a disconnect in the characteristic time and space scales of overland and groundwater flow. However, significant difficulties remain for the development of efficient and extensible modeling systems that operate robustly across complex regions. This paper introduces the Simulator for Hydrologic Unstructured Domains (SHUD), an integrated, multiprocess, multiscale, flexible-time-step model, in which hydrologic processes are fully coupled using the finite volume method. SHUD integrates overland flow, snow accumulation/melt, evapotranspiration, subsurface flow, groundwater flow, and river routing, thus allowing physical processes in general watersheds to be realistically captured. SHUD incorporates one-dimensional unsaturated flow, two-dimensional groundwater flow, and a fully connected river channel network with hillslopes supporting overland flow and baseflow. The paper introduces the design of SHUD, from the conceptual and mathematical description of hydrologic processes in a watershed to the model's computational structures. To demonstrate and validate the model performance, we employ three hydrologic experiments: the V-catchment experiment, Vauclin's experiment, and a model study of the Cache Creek Watershed in northern California. Ongoing applications of the SHUD model include hydrologic analyses of hillslope to regional scales (1 m2 to 106 km2), water resource and stormwater management, and interdisciplinary research for questions in limnology, agriculture, geochemistry, geomorphology, water quality, ecology, climate and land-use change. The strength of SHUD is its flexibility as a scientific and resource evaluation tool where modeling and simulation are required.


Author(s):  
Milan Dotlić ◽  
Dragan Vidović ◽  
Milan Dimkić ◽  
Milenko Pušić ◽  
Jovana Radanović

2013 ◽  
Vol 45 (2) ◽  
pp. 182-189
Author(s):  
Gokmen Tayfur ◽  
Zhiguo He ◽  
Qihua Ran

A finite volume numerical method was employed in the solution of two-dimensional pollutant transport in catchment sheet flow. The full dynamic wave constituted the sheet flow while the advection–diffusion equation with sink/source terms was the pollutant transport model. It is assumed that the solute in the surface active layer is uniformly distributed and the exchange rate of the solute between the active layer and overland flow are proportional to the difference between the concentrations in soil and water volume. Decrease of the solute transfer rate in the active surface layer caused by the transfer of solutes from soil to the overlying runoff is assumed to follow an exponential law. The equations governing sheet flow and pollutant transport are discretized using the finite volume method in space and an implicit backward difference scheme in time. The model was subjected to several numerical tests involving varying microtopographic surface, roughness, and infiltration. The results revealed that spatially varying microtopography plays an important role unlike the roughness and infiltration with respect to the total pollutant rate from the outlet of a catchment.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Hüseyin Y. DALKILIÇ ◽  
◽  
Amin GHAREHBAGHI ◽  

This paper documents a novel numerical model for calculating the behavior of unsteady, one-dimensional groundwater flow by using the finite volume method. The developed model determined water table fluctuations for different scenarios as follows: Drainage and recession from an unconfined aquifer, and water table fluctuations above an inclined leaky layer due to ditch recharge with a constant and variable upper boundary condition. The Boussinesq equation, which is the governing equation in this domain, is linearized and solved numerically in both of the explicit and fully implicit conditions. Meanwhile, the upwind scheme is employed to discretize the governing equation. The computed outcomes of both the explicit and implicit approaches agreed well with the results of analytical solution and laboratory experiments. The main reason is that in the first half of simulation process explicit scheme obtains slightly better results and in the second half of the simulation process fully implicit scheme predicts more reliable outcomes that are hidden in the neighbor node points. As a final point, the numerical outcomes confirm that the developed model is capable of calculating satisfactory outcomes in engineering and science applications.


Sign in / Sign up

Export Citation Format

Share Document