scholarly journals Description and evaluation of a detailed gas-phase chemistry scheme in the TM5-MP global chemistry transport model (r112)

Author(s):  
Stelios Myriokefalitakis ◽  
Nikos Daskalakis ◽  
Angelos Gkouvousis ◽  
Andreas Hilboll ◽  
Twan van Noije ◽  
...  

Abstract. This work documents and evaluates the tropospheric gas-phase chemical mechanism MOGUNTIA in the three-dimensional chemistry transport model TM5-MP. Compared to the modified CB05 chemical mechanism previously used in the model, the MOGUNTIA includes a detailed representation of the light hydrocarbons (C1-C4) and isoprene, along with a simplified chemistry representation of terpenes and aromatics. Another feature implemented in TM5-MP for this work is the use of the Rosenbrock solver in the chemistry code, which can replace the classical Euler Backward Integration method of the model. Global budgets of ozone (O3), carbon monoxide (CO), hydroxyl radicals (OH), nitrogen oxides (NOX) and volatile organic compounds (VOCs) are here analyzed and their mixing ratios are compared with a series of surface, aircraft and satellite observations for the year 2006. Both mechanisms appear to be able to represent satisfactorily observed mixing ratios of important trace gases, with the MOGUNTIA chemistry configuration yielding lower biases compared to measurements in most of the cases. However, the two chemical mechanisms fail to reproduce the observed mixing ratios of light VOCs, indicating insufficient primary emission source strengths, too weak vertical mixing in the boundary layer, and/or a low bias in the secondary contribution of C2-C3 organics via VOC atmospheric oxidation. Relative computational memory and time requirements of the different model configurations are also compared and discussed. Overall, compared to other chemistry schemes in use in global CTMs, the MOGUNTIA scheme simulates a large suite of oxygenated VOCs that are observed in the atmosphere at significant levels and are involved in aerosol formation, expanding, thus, the applications of TM5-MP.

2020 ◽  
Vol 13 (11) ◽  
pp. 5507-5548 ◽  
Author(s):  
Stelios Myriokefalitakis ◽  
Nikos Daskalakis ◽  
Angelos Gkouvousis ◽  
Andreas Hilboll ◽  
Twan van Noije ◽  
...  

Abstract. This work documents and evaluates the tropospheric gas-phase chemical mechanism MOGUNTIA in the three-dimensional chemistry transport model TM5-MP. Compared to the modified CB05 (mCB05) chemical mechanism previously used in the model, MOGUNTIA includes a detailed representation of the light hydrocarbons (C1–C4) and isoprene, along with a simplified chemistry representation of terpenes and aromatics. Another feature implemented in TM5-MP for this work is the use of the Rosenbrock solver in the chemistry code, which can replace the classical Euler backward integration method of the model. Global budgets of ozone (O3), carbon monoxide (CO), hydroxyl radicals (OH), nitrogen oxides (NOx), and volatile organic compounds (VOCs) are analyzed, and their mixing ratios are compared with a series of surface, aircraft, and satellite observations for the year 2006. Both mechanisms appear to be able to satisfactorily represent observed mixing ratios of important trace gases, with the MOGUNTIA chemistry configuration yielding lower biases than mCB05 compared to measurements in most of the cases. However, the two chemical mechanisms fail to reproduce the observed mixing ratios of light VOCs, indicating insufficient primary emission source strengths, oxidation that is too fast, and/or a low bias in the secondary contribution to C2–C3 organics via VOC atmospheric oxidation. Relative computational memory and time requirements of the different model configurations are also compared and discussed. Overall, the MOGUNTIA scheme simulates a large suite of oxygenated VOCs that are observed in the atmosphere at significant levels. This significantly expands the possible applications of TM5-MP.


2020 ◽  
Author(s):  
Eloise J. Slater ◽  
Lisa K. Whalley ◽  
Robert Woodward-Massey ◽  
Chunxiang Ye ◽  
James D. Lee ◽  
...  

Abstract. Wintertime in situ measurements of OH, HO2 and RO2 radicals and OH reactivity were made in central Beijing during November and December 2016. Exceptionally elevated NO was observed on occasions, up to ~ 250 ppbv, believed to be the highest mole fraction for which there have then co-located radical observations. The daily maximum mixing ratios for radical species varied significantly day-to-day over the range 1–8 × 106 cm−3 (OH), 0.2–1.5 × 108 cm−3 (HO2) and 0.3–2.5 × 108 cm−3 (RO2). Averaged over the full observation period, the mean daytime peak in radicals was 2.7 × 106 cm−3, 0.39 × 108 cm−3 and 0.88 × 108 cm−3 for OH, HO2 and total RO2, respectively. The main daytime source of new radicals via initiation processes (primary production) was the photolysis of HONO (~ 83 %), and the dominant termination pathways were the reactions of OH with NO and NO2, particularly under polluted, haze conditions. The Master Chemical Mechanism (MCM) v3.3.1 operating within a box model was used to simulate the concentrations of OH, HO2 and RO2. The model underpredicted OH, HO2 and RO2, especially when NO mixing ratios were high (above 6 ppbv). The observation-to-model ratio of OH, HO2 and RO2 increased from ~ 1 (for all radicals) at 3 ppbv of NO to a factor of ~ 3, ~ 20 and ~ 91 for OH, HO2 and RO2, respectively, at ~ 200 ppbv of NO. The significant underprediction of radical concentrations by the MCM suggests a deficiency in the representation of gas-phase chemistry at high NOx. The OH concentrations were surprisingly similar (within 20 % during the day) inside and outside of haze events, despite j(O1D) decreasing by 50 % during haze periods. These observations provide strong evidence that gas-phase oxidation by OH can continue to generate secondary pollutants even under high pollution episodes, despite the reduction in photolysis rates within haze.


2006 ◽  
Vol 6 (12) ◽  
pp. 5143-5162 ◽  
Author(s):  
K. Tsigaridis ◽  
M. Krol ◽  
F. J. Dentener ◽  
Y. Balkanski ◽  
J. Lathière ◽  
...  

Abstract. To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. The present 3-D modeling study focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3−), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3


2020 ◽  
Vol 20 (23) ◽  
pp. 14847-14871
Author(s):  
Eloise J. Slater ◽  
Lisa K. Whalley ◽  
Robert Woodward-Massey ◽  
Chunxiang Ye ◽  
James D. Lee ◽  
...  

Abstract. Wintertime in situ measurements of OH, HO2 and RO2 radicals and OH reactivity were made in central Beijing during November and December 2016. Exceptionally elevated NO was observed on occasions, up to ∼250 ppbv. The daily maximum mixing ratios for radical species varied significantly day-to-day over the ranges 1–8×106 cm−3 (OH), 0.2–1.5×108 cm−3 (HO2) and 0.3–2.5×108 cm−3 (RO2). Averaged over the full observation period, the mean daytime peak in radicals was 2.7×106, 0.39×108 and 0.88×108 cm−3 for OH, HO2 and total RO2, respectively. The main daytime source of new radicals via initiation processes (primary production) was the photolysis of HONO (∼83 %), and the dominant termination pathways were the reactions of OH with NO and NO2, particularly under polluted haze conditions. The Master Chemical Mechanism (MCM) v3.3.1 operating within a box model was used to simulate the concentrations of OH, HO2 and RO2. The model underpredicted OH, HO2 and RO2, especially when NO mixing ratios were high (above 6 ppbv). The observation-to-model ratio of OH, HO2 and RO2 increased from ∼1 (for all radicals) at 3 ppbv of NO to a factor of ∼3, ∼20 and ∼91 for OH, HO2 and RO2, respectively, at ∼200 ppbv of NO. The significant underprediction of radical concentrations by the MCM suggests a deficiency in the representation of gas-phase chemistry at high NOx. The OH concentrations were surprisingly similar (within 20 % during the day) in and outside of haze events, despite j(O1D) decreasing by 50 % during haze periods. These observations provide strong evidence that gas-phase oxidation by OH can continue to generate secondary pollutants even under high-pollution episodes, despite the reduction in photolysis rates within haze.


2020 ◽  
Author(s):  
Thomas Berkemeier ◽  
Masayuki Takeuchi ◽  
Gamze Eris ◽  
Nga L. Ng

Abstract. Organic aerosol constitutes a major fraction of the global aerosol burden and is predominantly formed as secondary organic aerosol (SOA). Environmental chambers have been used extensively to study aerosol formation and evolution under controlled conditions similar to the atmosphere, but quantitative prediction of the outcome of these experiments is generally not achieved, which signifies our lack in understanding of these results and limits their portability to large scale models. In general, kinetic models employing state-of-the-art explicit chemical mechanisms fail to describe the mass concentration and composition of SOA obtained from chamber experiments. Specifically, chemical reactions involving nitrate radical (NO3) oxidation of volatile organic compounds (VOCs) are a source of major uncertainty for assessing the chemical and physical properties of oxidation products. Here, we introduce a kinetic model that treats gas-phase chemistry, gas-particle partitioning, particle-phase oligomerization, and chamber wall loss and use it to describe the oxidation of the monoterpenes α-pinene and limonene with NO3. The model can reproduce aerosol mass and nitration degrees in experiments using either pure precursors or their mixtures and infers volatility distributions of products, branching ratios of reactive intermediates as well as particle-phase reaction rates. The gas-phase chemistry in the model is based on the Master Chemical Mechanism (MCM), but trades speciation of single compounds for the overall ability of quantitatively describing SOA formation by using a lumped chemical mechanism. The complex branching into a multitude of individual products in MCM is replaced in this model with product volatility distributions, detailed peroxy (RO2) and alkoxy (RO) radical chemistry and amended by a particle-phase oligomerization scheme. The kinetic parameters obtained in this study are constrained by a set of SOA formation and evaporation experiments conducted in the Georgia Tech Environmental Chamber (GTEC) facility. For both precursors, we present volatility distributions of nitrated and non-nitrated reaction products that are obtained by fitting the kinetic model systematically to the experimental data using a global optimization method, the Monte Carlo Genetic Algorithm (MCGA). The results presented here provide new mechanistic insight into the processes leading to formation and evaporation of SOA. Most notably, much of the non-linear behavior of precursor mixtures can be understood by RO2 fate and reversible oligomerization reactions in the particle phase, but some effects could be accredited to kinetic limitations of mass transport in the particle phase. The methodologies described in this work provide a basis for quantitative analysis of multi-source data from environmental chamber experiments with manageable computational effort.


2017 ◽  
Author(s):  
David Cabrera-Perez ◽  
Domenico Taraborrelli ◽  
Jos Lelieveld ◽  
Thorsten Hoffmann ◽  
Andrea Pozzer

Abstract. Aromatic compounds are reactive species influencing ozone formation, OH concentrations and organic aerosol formation. An assessment of their impacts on the gas-phase composition at a global scale has been performed using a general circulation atmospheric-chemistry model. Globally, we found a small annual average net decrease (less than 3 %) in global OH, ozone, and NOx mixing ratios when aromatic compounds are included in the chemical mechanism. This inclusion of aromatics also results in CO mixing ratio increases, which cause a general decrease in OH concentrations. The largest changes are found in glyoxal and NO3, with increases in the atmospheric burden of 10 % and 6 %, respectively. Regionally, significant differences were found particularly in high NOx regime areas, with an increase of up to 4 % in O3 mixing ratios and 8 % in OH concentrations. NO3 increased by more than 30 % in several regions of the northern hemisphere, and glyoxal increased up to 40 % in Europe and Asia. Large increases in formaldehyde were found in urban areas. Although the relative impact of aromatics at the global scale is limited, at a regional level they are important in atmospheric chemistry.


2021 ◽  
Author(s):  
James Weber ◽  
Scott Archer-Nicholls ◽  
N. Luke Abraham ◽  
Youngsub M. Shin ◽  
Thomas Bannan ◽  
...  

<p>We present the first incorporation and evaluation of the Common Representative Intermediates version 2.2 chemistry mechanism, CRI v2.2, for use in the United Kingdom Earth System Model (UKESM1). Tuned against the MCM v3.3.1, the CRI v2.2 mechanism builds on the previous CRI version, CRI v2.1, in UKESM1 (Archer-Nicholls et al., 2020) by updating isoprene chemistry and offers a more comprehensive description of tropospheric chemistry than the standard chemistry mechanism STRAT-TROP (ST).</p><p><span>CRI v2.2 adds state-of-the-art isoprene chemistry with the introduction of HO</span><sub><span>x</span></sub><span>-recycling via the isoprene peroxy radical isomerisation pathway, </span><span>making UKESM1 one of the first CMIP6 models to include this important chemistry. </span><span>HO</span><sub><span>x</span></sub><span>-recycling has noticeable effects on oxidants in regions with large emissions of biogenic volatile organic compounds (BVOCs). Low altitude OH in tropical forested regions increases by 75-150% relative to ST, reducing the existing model low bias compared to observations. Consequently, isoprene surface mixing ratios decrease considerably (25-40%), significantly improving the model high bias relative to ST. Methane lifetime decreases by 2% and tropospheric ozone burden increases by 4%. </span></p><p>Aerosol processes also differ between CRI v2.2 and ST, resulting in changes to the size and number distributions. Relative to ST, CRI v2.2 simulates an 8% decrease in the sulphate aerosol burden with 20% decreases in the nucleation and Aitken modes. By contrast, the secondary organic aerosol (SOA) nucleation mode burden increases by 11%. Globally, the average nucleation and Aitken mode aerosol number concentrations decrease by 20%.</p><p>The differences in aerosol and gas phase chemistry between CRI v2.2 and ST are likely to have impacts on the radiation budget. We plan to use CRI v2.2 and ST to investigate the influence that the chemical mechanism has on the simulated chemistry-climate feedbacks from BVOCs. In addition, CRI v2.2 will serve as the basis for the addition of a scheme describing the formation of highly oxygenated organic molecules (HOMs) from BVOCs, facilitating a semi-explicit mechanism for new particle formation from organic species.</p>


2019 ◽  
Vol 19 (22) ◽  
pp. 13741-13758
Author(s):  
Carlton Xavier ◽  
Anton Rusanen ◽  
Putian Zhou ◽  
Chen Dean ◽  
Lukas Pichelstorfer ◽  
...  

Abstract. In this study we modeled secondary organic aerosol (SOA) mass loadings from the oxidation (by O3, OH and NO3) of five representative biogenic volatile organic compounds (BVOCs): isoprene, endocyclic bond-containing monoterpenes (α-pinene and limonene), exocyclic double-bond compound (β-pinene) and a sesquiterpene (β-caryophyllene). The simulations were designed to replicate an idealized smog chamber and oxidative flow reactors (OFRs). The Master Chemical Mechanism (MCM) together with the peroxy radical autoxidation mechanism (PRAM) were used to simulate the gas-phase chemistry. The aim of this study was to compare the potency of MCM and MCM + PRAM in predicting SOA formation. SOA yields were in good agreement with experimental values for chamber simulations when MCM + PRAM was applied, while a stand-alone MCM underpredicted the SOA yields. Compared to experimental yields, the OFR simulations using MCM + PRAM yields were in good agreement for BVOCs oxidized by both O3 and OH. On the other hand, a stand-alone MCM underpredicted the SOA mass yields. SOA yields increased with decreasing temperatures and NO concentrations and vice versa. This highlights the limitations posed when using fixed SOA yields in a majority of global and regional models. Few compounds that play a crucial role (>95 % of mass load) in contributing to SOA mass increase (using MCM + PRAM) are identified. The results further emphasized that incorporating PRAM in conjunction with MCM does improve SOA mass yield estimation.


Sign in / Sign up

Export Citation Format

Share Document