scholarly journals A versatile method for computing optimized snow albedo from spectrally fixed radiative variables: VALHALLA v1.0

2021 ◽  
Author(s):  
Florent Veillon ◽  
Marie Dumont ◽  
Charles Amory ◽  
Mathieu Fructus

Abstract. In climate models, the snow albedo scheme generally calculates only a narrowband or broadband albedo, which leads to significant uncertainties. Here, we present the Versatile ALbedo calculation metHod based on spectrALLy fixed radiative vAriables (VALHALLA, version 1.0), to optimize spectral snow albedo calculation. For this optimization, the energy absorbed by the snowpack is calculated by the spectral albedo model Two-streAm Radiative TransfEr in Snow (TARTES) and the spectral irradiance model Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). This calculation takes into account the spectral characteristics of the incident radiation and the optical properties of the snow, based on an analytical approximation of the radiative transfer of snow. For this method, 30 wavelengths, called tie points (tps), and 16 reference irradiance profiles are calculated to incorporate the absorbed energy and the reference irradiance. The absorbed energy is then interpolated for each wavelength between two tps with adequate kernel functions derived from radiative transfer theory for snow and the atmosphere. We show that the accuracy of the absorbed energy calculation primarily depends on the adaptation of the irradiance of the reference profile to that of the simulation (absolute difference

2021 ◽  
Vol 14 (12) ◽  
pp. 7329-7343
Author(s):  
Florent Veillon ◽  
Marie Dumont ◽  
Charles Amory ◽  
Mathieu Fructus

Abstract. In climate models, the snow albedo scheme generally calculates only a narrowband or broadband albedo, which leads to significant uncertainties. Here, we present the Versatile ALbedo calculation metHod based on spectrALLy fixed radiative vAriables (VALHALLA version 1.0) to optimize spectral snow albedo calculation. For this optimization, the energy absorbed by the snowpack is calculated by the spectral albedo model Two-streAm Radiative TransfEr in Snow (TARTES) and the spectral irradiance model Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). This calculation takes into account the spectral characteristics of the incident radiation and the optical properties of the snow based on an analytical approximation of the radiative transfer of snow. For this method, 30 wavelengths, called tie points (TPs), and 16 reference irradiance profiles are calculated to incorporate the absorbed energy and the reference irradiance. The absorbed energy is then interpolated for each wavelength between two TPs with adequate kernel functions derived from radiative transfer theory for snow and the atmosphere. We show that the accuracy of the absorbed energy calculation primarily depends on the adaptation of the irradiance of the reference profile to that of the simulation (absolute difference <1 W m−2 for broadband absorbed energy and absolute difference <0.005 for broadband albedo). In addition to the performance in terms of accuracy and calculation time, the method is adaptable to any atmospheric input (broadband, narrowband) and is easily adaptable for integration into a radiative scheme of a global or regional climate model.


2018 ◽  
Author(s):  
Christiaan T. van Dalum ◽  
Willem Jan van de Berg ◽  
Quentin Libois ◽  
Ghislain Picard ◽  
Michiel R. van den Broeke

Abstract. Snow albedo schemes in regional climate models often lack a sophisticated radiation penetration scheme and generally compute only a broadband albedo. Here, we present the Spectral-to-NarrOWBand ALbedo module (SNOWBAL, version 1.0) to couple effectively a spectral albedo model with a narrowband radiation scheme. Specifically, the Two-streAm Radiative TransfEr in Snow model (TARTES) is coupled with the European Center for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System atmospheric radiation scheme based on the rapid radiation transfer model, which is embedded in the regional climate model RACMO2. This coupling allows to explicitly account for the effect of clouds, snow impurities and snow metamorphism on albedo. Firstly, we present a narrowband albedo method to project the spectral albedos of TARTES onto the 14 spectral bands of the ECMWF shortwave radiation scheme using a representative wavelength (RW) for each band. Using TARTES and spectral downwelling surface irradiance derived with the DIScrete Ordinate Radiative Transfer atmospheric model, we show that RWs primarily depend on the solar zenith angle (SZA) and cloud content. Secondly, we compare the TARTES narrowband albedo, using offline RACMO2 results for South Greenland, with the broadband albedo parameterizations of Gardner and Sharp (2010), currently implemented in RACMO2, and the multi-layered parameterization of Kuipers Munneke et al. (2011, PKM). The actual absence of radiation penetration in RACMO2 leads on average to a higher albedo compared with TARTES narrowband albedo. Furthermore, large differences between the TARTES narrowband albedo and PKM and RACMO2 are observed for high SZA and clear-sky conditions, and after melt events when the snowpack is very inhomogeneous. This highlights the importance of accounting for spectral albedo and radiation penetration to simulate the energy budget of the Greenland ice sheet.


2019 ◽  
Vol 12 (12) ◽  
pp. 5157-5175 ◽  
Author(s):  
Christiaan T. van Dalum ◽  
Willem Jan van de Berg ◽  
Quentin Libois ◽  
Ghislain Picard ◽  
Michiel R. van den Broeke

Abstract. Snow albedo schemes in regional climate models often lack a sophisticated radiation penetration scheme and generally compute only a broadband albedo. Here, we present the Spectral-to-NarrOWBand ALbedo module (SNOWBAL, version 1.2) to couple effectively a spectral albedo model with a narrowband radiation scheme. Specifically, the Two-streAm Radiative TransfEr in Snow model (TARTES) is coupled with the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS), cycle 33R1, atmospheric radiation scheme based on the Rapid Radiation Transfer Model, which is embedded in the Regional Atmospheric Climate Model version 2.3p2 (RACMO2). This coupling allows to explicitly account for the effect of clouds, water vapor, snow impurities and snow metamorphism on albedo. Firstly, we present a narrowband albedo method to project the spectral albedos of TARTES onto the 14 spectral bands of the IFS shortwave radiation scheme using a representative wavelength (RW) for each band. Using TARTES and spectral downwelling surface irradiance derived with the DIScrete Ordinate Radiative Transfer atmospheric model, we show that RWs primarily depend on the solar zenith angle (SZA), cloud content and water vapor. Secondly, we compare the TARTES narrowband albedo, using offline RACMO2 results for south Greenland, with the broadband albedo parameterizations of Gardner and Sharp (2010), currently implemented in RACMO2, and the multi-layered parameterization of Kuipers Munneke et al. (2011, PKM). The actual absence of radiation penetration in RACMO2 leads on average to a higher albedo compared with TARTES narrowband albedo. Furthermore, large differences between the TARTES narrowband albedo and PKM and RACMO2 are observed for high SZA and clear-sky conditions, and after melt events when the snowpack is very inhomogeneous. This highlights the importance of accounting for spectral albedo and radiation penetration to simulate the energy budget of the Greenland ice sheet.


2010 ◽  
Vol 49 (3) ◽  
pp. 363-380 ◽  
Author(s):  
Zhuo Wang ◽  
Xubin Zeng

Abstract Snow albedo plays an important role in land models for weather, climate, and hydrometeorological studies, but its treatment in various land models still contains significant deficiencies. Complementary to previous studies that evaluated the snow albedo as part of an overall land model study, the snow albedo formulations as used in four major weather forecasting and climate models [European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) “Noah” land model, National Center for Atmospheric Research (NCAR) Community Land Model (CLM3), and NCEP global model] were directly evaluated here using multiyear Boreal Ecosystem–Atmosphere Study (BOREAS) in situ data over grass and forest sites. First, four idealized cases over grass and forest sites were designed to understand better the different albedo formulations in these models. Then the BOREAS data were used to evaluate snow albedo and relevant formulations and to identify deficiencies of each model. Based on these analyses, suggestions that involve only minor changes in parameters or formulations were made to significantly reduce these deficiencies of each model. For the ECMWF land model, using the square root of snow water equivalent (SWE), rather than SWE itself, in the computation of snow fraction would significantly reduce the underestimation of albedo over grass. For the NCEP Noah land model, reducing (increasing) the critical SWE for full snow cover over short (tall) vegetation would reduce the underestimate (overestimate) of snow albedo over the grass (forest) site. For the NCAR CLM3, revising the coefficient used in the ground snow-fraction computation would substantially reduce the albedo underestimation over grass. For the albedo formulations in the NCEP global model, replacing the globally constant fresh snow albedo by the vegetation-type-dependent Moderate-Resolution Imaging Spectroradiometer (MODIS) maximum snow albedo would significantly improve the overestimation of model albedo over forest.


2021 ◽  
Author(s):  
Megan Stretton ◽  
William Morrison ◽  
Robin Hogan ◽  
Sue Grimmond

&lt;p&gt;The heterogenous structure of cities impacts radiative exchanges (e.g. albedo and heat storage). Numerical weather prediction (NWP) models often characterise the urban structure with an infinite street canyon &amp;#8211; but this does not capture the three-dimensional urban form. SPARTACUS-Urban (SU) - a fast, multi-layer radiative transfer model designed for NWP - is evaluated using the explicit Discrete Anisotropic Radiative Transfer (DART) model for shortwave fluxes across several model domains &amp;#8211; from a regular array of cubes to real cities .&lt;/p&gt;&lt;p&gt;SU agrees with DART (errors &lt; 5.5% for all variables) when the SU assumptions of building distribution are fulfilled (e.g. randomly distribution). For real-world areas with pitched roofs, SU underestimates the albedo (&lt; 10%) and shortwave transmission to the surface (&lt; 15%), and overestimates wall-plus-roof absorption (9-27%), with errors increasing with solar zenith angle. SU should be beneficial to weather and climate models, as it allows more realistic urban form (cf. most schemes) without large increases in computational cost.&lt;/p&gt;


2019 ◽  
Vol 13 (8) ◽  
pp. 2169-2187 ◽  
Author(s):  
Francois Tuzet ◽  
Marie Dumont ◽  
Laurent Arnaud ◽  
Didier Voisin ◽  
Maxim Lamare ◽  
...  

Abstract. Light-absorbing particles (LAPs) such as black carbon or mineral dust are some of the main drivers of snow radiative transfer. Small amounts of LAPs significantly increase snowpack absorption in the visible wavelengths where ice absorption is particularly weak, impacting the surface energy budget of snow-covered areas. However, linking measurements of LAP concentration in snow to their actual radiative impact is a challenging issue which is not fully resolved. In the present paper, we point out a new method based on spectral irradiance profile (SIP) measurements which makes it possible to identify the radiative impact of LAPs on visible light extinction in homogeneous layers of the snowpack. From this impact on light extinction it is possible to infer LAP concentrations present in each layer using radiative transfer theory. This study relies on a unique dataset composed of 26 spectral irradiance profile measurements in the wavelength range 350–950 nm with concomitant profile measurements of snow physical properties and LAP concentrations, collected in the Alps over two snow seasons in winter and spring conditions. For 55 homogeneous snow layers identified in our dataset, the concentrations retrieved from SIP measurements are compared to chemical measurements of LAP concentrations. A good correlation is observed for measured concentrations higher than 5 ng g−1 (r2=0.81) despite a clear positive bias. The potential causes of this bias are discussed, underlining a strong sensitivity of our method to LAP optical properties and to the relationship between snow microstructure and snow optical properties used in the theory. Additional uncertainties such as artefacts in the measurement technique for SIP and chemical contents along with LAP absorption efficiency may explain part of this bias. In addition, spectral information on LAP absorption can be retrieved from SIP measurements. We show that for layers containing a unique absorber, this absorber can be identified in some cases (e.g. mineral dust vs. black carbon). We also observe an enhancement of light absorption between 350 and 650 nm in the presence of liquid water in the snowpack, which is discussed but not fully elucidated. A single SIP acquisition lasts approximately 1 min and is hence much faster than collecting a profile of chemical measurements. With the recent advances in modelling LAP–snow interactions, our method could become an attractive alternative to estimate vertical profiles of LAP concentrations in snow.


2006 ◽  
Vol 19 (11) ◽  
pp. 2617-2630 ◽  
Author(s):  
Xin Qu ◽  
Alex Hall

Abstract In this paper, the two factors controlling Northern Hemisphere springtime snow albedo feedback in transient climate change are isolated and quantified based on scenario runs of 17 climate models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The first factor is the dependence of planetary albedo on surface albedo, representing the atmosphere's attenuation effect on surface albedo anomalies. It is potentially a major source of divergence in simulations of snow albedo feedback because of large differences in simulated cloud fields in Northern Hemisphere land areas. To calculate the dependence, an analytical model governing planetary albedo was developed. Detailed validations of the analytical model for two of the simulations are shown, version 3 of the Community Climate System Model (CCSM3) and the Geophysical Fluid Dynamics Laboratory global coupled Climate Model 2.0 (CM2.0), demonstrating that it facilitates a highly accurate calculation of the dependence of planetary albedo on surface albedo given readily available simulation output. In all simulations it is found that surface albedo anomalies are attenuated by approximately half in Northern Hemisphere land areas as they are transformed into planetary albedo anomalies. The intermodel standard deviation in the dependence of planetary albedo on surface albedo is surprisingly small, less than 10% of the mean. Moreover, when an observational estimate of this factor is calculated by applying the same method to the satellite-based International Satellite Cloud Climatology Project (ISCCP) data, it is found that most simulations agree with ISCCP values to within about 10%, despite further disagreements between observed and simulated cloud fields. This suggests that even large relative errors in simulated cloud fields do not result in significant error in this factor, enhancing confidence in climate models. The second factor, related exclusively to surface processes, is the change in surface albedo associated with an anthropogenically induced temperature change in Northern Hemisphere land areas. It exhibits much more intermodel variability. The standard deviation is about ⅓ of the mean, with the largest value being approximately 3 times larger than the smallest. Therefore this factor is unquestionably the main source of the large divergence in simulations of snow albedo feedback. To reduce the divergence, attention should be focused on differing parameterizations of snow processes, rather than intermodel variations in the attenuation effect of the atmosphere on surface albedo anomalies.


1999 ◽  
Vol 38 (18) ◽  
pp. 3869 ◽  
Author(s):  
Harry Schwander ◽  
Bernhard Mayer ◽  
Ansgar Ruggaber ◽  
Astrid Albold ◽  
Gunther Seckmeyer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document