scholarly journals Modeling the diurnal cycle of conserved and reactive species in the convective boundary layer using SOMCRUS

2016 ◽  
Vol 9 (3) ◽  
pp. 979-996 ◽  
Author(s):  
Donald H. Lenschow ◽  
David Gurarie ◽  
Edward G. Patton

Abstract. We have developed a one-dimensional second-order closure numerical model to study the vertical turbulent transport of trace reactive species in the convective (daytime) planetary boundary layer (CBL), which we call the Second-Order Model for Conserved and Reactive Unsteady Scalars (SOMCRUS). The temporal variation of the CBL depth is calculated using a simple mixed-layer model with a constant entrainment coefficient and zero-order discontinuity at the CBL top. We then calculate time-varying continuous profiles of mean concentrations and vertical turbulent fluxes, variances, and covariances of both conserved and chemically reactive scalars in a diurnally varying CBL. The set of reactive species is the O3–NO–NO2 triad. The results for both conserved and reactive species are compared with large-eddy simulations (LES) for the same free-convection case using the same boundary and initial conditions. For the conserved species, we compare three cases with different combinations of surface fluxes, and CBL and free-troposphere concentrations. We find good agreement of SOMCRUS with LES for the mean concentrations and fluxes of both conserved and reactive species except near the CBL top, where SOMCRUS predicts a somewhat shallower depth, and has sharp transitions in both the mean and turbulence variables, in contrast to more smeared-out variations in the LES due to horizontal averaging. Furthermore, SOMCRUS generally underestimates the variances and species–species covariances. SOMCRUS predicts temperature–species covariances similar to LES near the surface, but much smaller magnitude peak values near the CBL top, and a change in sign of the covariances very near the CBL top, while the LES predicts a change in sign of the covariances in the lower half of the CBL. SOMCRUS is also able to estimate the intensity of segregation (the ratio of the species–species covariance to the product of their means), which can alter the rates of second-order chemical reactions; however, for the case considered here, this effect is small. The simplicity and extensibility of SOMCRUS means that it can be utilized for a broad range of turbulence-mixing scenarios and sets of chemical reactions in the planetary boundary layer; it therefore holds great promise as a tool to incorporate these processes within air quality and climate models.

2015 ◽  
Vol 8 (10) ◽  
pp. 9323-9372 ◽  
Author(s):  
D. H. Lenschow ◽  
D. Gurarie ◽  
E. G. Patton

Abstract. We have developed a one-dimensional second-order closure numerical model to study the vertical turbulent transport of trace reactive species in the convective (daytime) planetary boundary layer (CBL), which we call the Second-Order Model for Conserved and Reactive Unsteady Scalars (SOMCRUS). The temporal variation of the CBL depth is calculated using a simple mixed-layer model with a constant entrainment coefficient and zero-order discontinuity at the CBL top. We then calculate time-varying continuous profiles of mean concentrations and vertical turbulent fluxes, variances, and covariances of both conserved and chemically-reactive scalars in a diurnally-varying CBL. The set of reactive species is the O3–NO–NO2 triad. The results for both conserved and reactive species are compared with large-eddy simulations (LES) for the same free-convection case using the same boundary and initial conditions. For the conserved species, we compare three cases with different combinations of surface fluxes, and CBL and free-troposphere concentrations. We find good agreement of SOMCRUS with LES for the mean concentrations and fluxes of both conserved and reactive species except near the CBL top, where SOMCRUS predicts a somewhat shallower depth, and has sharp transitions in both the mean and turbulence variables, in contrast to more smeared out variations in the LES due to horizontal averaging. Furthermore, SOMCRUS generally underestimates the variances and species-species covariances. SOMCRUS predicts temperature-species covariances similar to LES near the surface, but much smaller magnitude peak values near the CBL top, and a change in sign of the covariances very near the CBL top, while the LES predicts a change in sign of the covariances in the lower half of the CBL. SOMCRUS is also able to estimate the intensity of segregation (the ratio of the species-species covariance to the product of their means), which can alter the rates of second-order chemical reactions; however, for the case considered here, this effect is small. The simplicity and extensibility of SOMCRUS means that it can be utilized for a broad range of turbulence mixing scenarios and sets of chemical reactions in the planetary boundary layer; it therefore holds great promise as a tool to incorporate these processes within air quality and climate models.


2018 ◽  
Vol 18 (20) ◽  
pp. 14813-14835 ◽  
Author(s):  
Liza I. Díaz-Isaac ◽  
Thomas Lauvaux ◽  
Kenneth J. Davis

Abstract. Atmospheric transport model errors are one of the main contributors to the uncertainty affecting CO2 inverse flux estimates. In this study, we determine the leading causes of transport errors over the US upper Midwest with a large set of simulations generated with the Weather Research and Forecasting (WRF) mesoscale model. The various WRF simulations are performed using different meteorological driver datasets and physical parameterizations including planetary boundary layer (PBL) schemes, land surface models (LSMs), cumulus parameterizations and microphysics parameterizations. All the different model configurations were coupled to CO2 fluxes and lateral boundary conditions from the CarbonTracker inversion system to simulate atmospheric CO2 mole fractions. PBL height, wind speed, wind direction, and atmospheric CO2 mole fractions are compared to observations during a month in the summer of 2008, and statistical analyses were performed to evaluate the impact of both physics parameterizations and meteorological datasets on these variables. All of the physical parameterizations and the meteorological initial and boundary conditions contribute 3 to 4 ppm to the model-to-model variability in daytime PBL CO2 except for the microphysics parameterization which has a smaller contribution. PBL height varies across ensemble members by 300 to 400 m, and this variability is controlled by the same physics parameterizations. Daily PBL CO2 mole fraction errors are correlated with errors in the PBL height. We show that specific model configurations systematically overestimate or underestimate the PBL height averaged across the region with biases closely correlated with the choice of LSM, PBL scheme, and cumulus parameterization (CP). Domain average PBL wind speed is overestimated in nearly every model configuration. Both planetary boundary layer height (PBLH) and PBL wind speed biases show coherent spatial variations across the Midwest, with PBLH overestimated averaged across configurations by 300–400 m in the west, and PBL winds overestimated by about 1 m s−1 on average in the east. We find model configurations with lower biases averaged across the domain, but no single configuration is optimal across the entire region and for all meteorological variables. We conclude that model ensembles that include multiple physics parameterizations and meteorological initial conditions are likely to be necessary to encompass the atmospheric conditions most important to the transport of CO2 in the PBL, but that construction of such an ensemble will be challenging due to ensemble biases that vary across the region.


2015 ◽  
Vol 783 ◽  
pp. 379-411 ◽  
Author(s):  
I. Marusic ◽  
K. A. Chauhan ◽  
V. Kulandaivelu ◽  
N. Hutchins

In this paper we study the spatial evolution of zero-pressure-gradient (ZPG) turbulent boundary layers from their origin to a canonical high-Reynolds-number state. A prime motivation is to better understand under what conditions reliable scaling behaviour comparisons can be made between different experimental studies at matched local Reynolds numbers. This is achieved here through detailed streamwise velocity measurements using hot wires in the large University of Melbourne wind tunnel. By keeping the unit Reynolds number constant, the flow conditioning, contraction and trip can be considered unaltered for a given boundary layer’s development and hence its evolution can be studied in isolation from the influence of inflow conditions by moving to different streamwise locations. Careful attention was given to the experimental design in order to make comparisons between flows with three different trips while keeping all other parameters nominally constant, including keeping the measurement sensor size nominally fixed in viscous wall units. The three trips consist of a standard trip and two deliberately ‘over-tripped’ cases, where the initial boundary layers are over-stimulated with additional large-scale energy. Comparisons of the mean flow, normal Reynolds stress, spectra and higher-order turbulence statistics reveal that the effects of the trip are seen to be significant, with the remnants of the ‘over-tripped’ conditions persisting at least until streamwise stations corresponding to $Re_{x}=1.7\times 10^{7}$ and $x=O(2000)$ trip heights are reached (which is specific to the trips used here), at which position the non-canonical boundary layers exhibit a weak memory of their initial conditions at the largest scales $O(10{\it\delta})$, where ${\it\delta}$ is the boundary layer thickness. At closer streamwise stations, no one-to-one correspondence is observed between the local Reynolds numbers ($Re_{{\it\tau}}$, $Re_{{\it\theta}}$ or $Re_{x}$ etc.), and these differences are likely to be the cause of disparities between previous studies where a given Reynolds number is matched but without account of the trip conditions and the actual evolution of the boundary layer. In previous literature such variations have commonly been referred to as low-Reynolds-number effects, while here we show that it is more likely that these differences are due to an evolution effect resulting from the initial conditions set up by the trip and/or the initial inflow conditions. Generally, the mean velocity profiles were found to approach a constant wake parameter ${\it\Pi}$ as the three boundary layers developed along the test section, and agreement of the mean flow parameters was found to coincide with the location where other statistics also converged, including higher-order moments up to tenth order. This result therefore implies that it may be sufficient to document the mean flow parameters alone in order to ascertain whether the ZPG flow, as described by the streamwise velocity statistics, has reached a canonical state, and a computational approach is outlined to do this. The computational scheme is shown to agree well with available experimental data.


2010 ◽  
Vol 67 (12) ◽  
pp. 3835-3853 ◽  
Author(s):  
David B. Mechem ◽  
Yefim L. Kogan ◽  
David M. Schultz

Abstract Previous large-eddy simulations (LES) of stratocumulus-topped boundary layers have been exclusively set in marine environments. Boundary layer stratocumulus clouds are also prevalent over the continent but have not been simulated previously. A suite of LES runs was performed for a case of continental post-cold-frontal stratocumulus observed by the Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF), located in northern Oklahoma. Comparison with fixed, ground-based sensors necessitated an Eulerian approach in which it was necessary to supply to the model estimates of synoptic-scale advection and vertical motion, particularly given the quickly evolving, baroclinic nature of the synoptic environment. Initial analyses from the Rapid Update Cycle model supplied estimates for these forcing terms. Turbulent statistics calculated from the LES results are consistent with large-eddy observations obtained from millimeter-wave cloud radar. The magnitude of turbulence is weaker than in typical marine stratocumulus, a result attributed to highly decoupled cloud and subcloud circulations associated with a deep layer of negative buoyancy flux arising from the entrainment of warm, free-tropospheric air. Model results are highly sensitive to variations in advection of temperature and moisture and much less sensitive to changes in synoptic-scale vertical velocity and surface fluxes. For this case, moisture and temperature advection, rather than entrainment, tend to be the governing factors in the analyzed cloud system maintenance and decay. Typical boundary layer entrainment scalings applied to this case do not perform very well, a result attributed to the highly decoupled nature of the circulation. Shear production is an important part of the turbulent kinetic energy budget. The dominance of advection provides an optimistic outlook for mesoscale, numerical weather prediction, and climate models because these classes of models represent these grid-scale processes better than they do subgrid-scale processes such as entrainment.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1317
Author(s):  
Tito Maldonado ◽  
Jorge A. Amador ◽  
Erick R. Rivera ◽  
Hugo G. Hidalgo ◽  
Eric J. Alfaro

Hurricane Otto (2016) was characterised by remarkable meteorological features of relevance for the scientific community and society. Scientifically, among the most important attributes of Otto is that it underwent a rapid intensification (RI) process. For society, this cyclone severely impacted Costa Rica and Nicaragua, leaving enormous economic losses and many fatalities. In this study, a set of three numerical simulations are performed to examine the skill of model estimations in reproducing RI and trajectory of Hurricane Otto by comparing the results of a global model to a regional model using three different planetary boundary layer parameterizations (PBL). The objective is to set the basis for future studies that analyse the physical reasons why a particular simulation (associated with a certain model setup) performs better than others in terms of reproducing RI and trajectory. We use the regional model Weather Research and Forecasting—Advanced Research WRF (WRF-ARW) with boundary and initial conditions provided by the Global Forecast System (GFS) analysis (horizontal resolution of 0.5 degrees). The PBL used are the Medium Range Forecast, the Mellor-Yamada-Janjic (MYJ), and the Yonsei University (YSU) parameterizations. The regional model is run in three static domains with horizontal grid spacing of 27, 9 and 3 km, the latter covering the spacial extent of Otto during the simulation period. WRF-ARW results improve the GFS forecast, in almost every aspect evaluated in this study, particularly, the simulated trajectories in WRF-ARW show a better representation of the cyclone path and movement compared to GFS. Even though the MYJ experiment was the only one that exhibited an abrupt 24-h change in the storm’s surface wind, close to the 25-knot threshold, the YSU scheme presented the fastest intensification, closest to reality.


2020 ◽  
Vol 12 (16) ◽  
pp. 2571
Author(s):  
Shaik Allabakash ◽  
Sanghun Lim

Planetary boundary layer (PBL) height plays a significant role in climate modeling, weather forecasting, air quality prediction, and pollution transport processes. This study examined the climatology of PBL-associated meteorological parameters over the Korean peninsula and surrounding sea using data from the ERA5 dataset produced by the European Centre for Medium-range Weather Forecasts (ECMWF). The data covered the period from 2008 to 2017. The bulk Richardson number methodology was used to determine the PBL height (PBLH). The PBLH obtained from the ERA5 data agreed well with that derived from sounding and Global Positioning System Radio Occultation datasets. Significant diurnal and seasonal variability in PBLH was observed. The PBLH increases from morning to late afternoon, decreases in the evening, and is lowest at night. It is high in the summer, lower in spring and autumn, and lowest in winter. The variability of the PBLH with respect to temperature, relative humidity, surface pressure, wind speed, lower tropospheric stability, soil moisture, and surface fluxes was also examined. The growth of the PBLH was high in the spring and in southern regions due to the low soil moisture content of the surface. A high PBLH pattern is evident in high-elevation regions. Increasing trends of the surface temperature and accordingly PBLH were observed from 2008 to 2017.


2021 ◽  
pp. 1-64
Author(s):  
Man Yue ◽  
Minghuai Wang ◽  
Jianping Guo ◽  
Haipeng Zhang ◽  
Xinyi Dong ◽  
...  

AbstractThe planetary boundary layer (PBL) plays an essential role in climate and air quality simulations. Nevertheless, large uncertainties remain in understanding the drivers for long-term trend of PBL height (PBLH) and its simulation. Here we combinate the radiosonde data and reanalysis datasets to analyze PBLH long-term trends over China, and to further explore the performance of CMIP6 climate models in simulating these trends. Results show that the observed long-term “positive to negative” trend shift of PBLH is related to the variation in the surface upward sensible heat flux (SHFLX), and the SHFLX is further controlled by the synergistic effect of low cloud cover (LCC) and soil moisture (SM) changes. Variabilities in LCC and SM directly influence the energy balance via surface net downward shortwave flux (SWF) and the latent heat flux (LHFLX), respectively. The CMIP6 climate models, however, cannot reproduce the observed PBLH long-term trend shift over China. The CMIP6 results illustrate an overwhelming continuous downward PBLH trend during the 1979–2014 period, which is largely caused by the poor capability in simulating long-term variations of cloud radiative effect. Our results reveal that the long-term cloud radiative effect simulation is critical for CMIP6 models in reproducing the long-term trend of PBLH. This study highlights the importance of processes associated with LCC and SM in modulating PBLH long-term variations and calls attentions to improve these processes in climate models in order to improve the PBLH long-term trend simulations.


Sign in / Sign up

Export Citation Format

Share Document