scholarly journals Evaluation of the sectional aerosol microphysics module SALSA implementation in ECHAM5-HAM aerosol-climate model

2011 ◽  
Vol 4 (4) ◽  
pp. 3623-3690 ◽  
Author(s):  
T. Bergman ◽  
V.-M. Kerminen ◽  
H. Korhonen ◽  
K. J. Lehtinen ◽  
R. Makkonen ◽  
...  

Abstract. We present the implementation and evaluation of a sectional aerosol microphysics model SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by keeping the number of variables needed to describe the size and composition distribution to the minimum. The aerosol size distribution is described using 20 size sections with 10 size sections in size space which cover diameters ranging from 3 nm to 10 μm divided to three subranges each having distinct optimised process and compound selection. The ability of the module to describe the global aerosol properties was evaluated by comparison against (1) measured continental and marine size distributions, (2) observed variability of continental modal number concentrations, (3) measured sulphate, organic carbon, black carbon and sea salt mass concentrations, (4) observations of AOD and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7 which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well using the coarse resolution of 10 size sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sea salt, sulphate and carbonaceous species have an annual mean within a factor of five of the observations, while the simulated sea salt concentrations reproduce the observations less accurately and show high variability. Regionally, AOD is in relatively good agreement with the observations (within a factor of two). At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and dust regions the modeled AOD is significantly lower than the observed. Regarding the most investigated aerosol properties, the performances of SALSA and the modal aerosol module M7 against observations are comparable. However, SALSA reproduces the observed number concentrations and the size distributions of CCN sized particles much more accurately than M7, and is therefore a good choice for aerosol-cloud interaction studies in global models. Our study also shows that when including activation type nucleation process in the boundary layer, the modeled concentrations of particles under 50 nm in diameter are reproduced much better compared to when only binary nucleation is assumed.

2012 ◽  
Vol 5 (3) ◽  
pp. 845-868 ◽  
Author(s):  
T. Bergman ◽  
V.-M. Kerminen ◽  
H. Korhonen ◽  
K. J. Lehtinen ◽  
R. Makkonen ◽  
...  

Abstract. We present the implementation and evaluation of a sectional aerosol microphysics module SALSA within the aerosol-climate model ECHAM5-HAM. This aerosol microphysics module has been designed to be flexible and computationally efficient so that it can be implemented in regional or global scale models. The computational efficiency has been achieved by minimising the number of variables needed to describe the size and composition distribution. The aerosol size distribution is described using 10 size classes with parallel sections which can have different chemical compositions. Thus in total, the module tracks 20 size sections which cover diameters ranging from 3 nm to 10 μm and are divided into three subranges, each with an optimised selection of processes and compounds. The implementation of SALSA into ECHAM5-HAM includes the main aerosol processes in the atmosphere: emissions, removal, radiative effects, liquid and gas phase sulphate chemistry, and the aerosol microphysics. The aerosol compounds treated in the module are sulphate, organic carbon, sea salt, black carbon, and mineral dust. In its default configuration, ECHAM5-HAM treats aerosol size distribution using the modal method. In this implementation, the aerosol processes were converted to be used in a sectional model framework. The ability of the module to describe the global aerosol properties was evaluated by comparing against (1) measured continental and marine size distributions, (2) observed variability of continental number concentrations, (3) measured sulphate, organic carbon, black carbon and sea-salt mass concentrations, (4) observations of aerosol optical depth (AOD) and other aerosol optical properties from satellites and AERONET network, (5) global aerosol budgets and concentrations from previous model studies, and (6) model results using M7, which is the default aerosol microphysics module in ECHAM5-HAM. The evaluation shows that the global aerosol properties can be reproduced reasonably well using a coarse resolution of 10 sections in size space. The simulated global aerosol budgets are within the range of previous studies. Surface concentrations of sulphate and carbonaceous species have an annual mean within a factor of two of the observations. The simulated sea-salt concentrations reproduce the observations within a factor of two, apart from the Southern Ocean over which the concentrations are within a factor of five. Regionally, AOD is in a relatively good agreement with the observations (within a factor of two). At mid-latitudes the observed AOD is captured well, while at high-latitudes as well as in some polluted and dust regions the modelled AOD is significantly lower than observed. Regarding most of the investigated aerosol properties, the SALSA and the modal aerosol module M7 perform comparably well against observations. However, SALSA reproduces the observed number concentrations and the size distribution of CCN sized particles much more accurately than M7, and is therefore a good choice for aerosol-cloud interaction studies in global models. Our study also shows that when activation type nucleation in the boundary layer is included, the observed concentration of particles under 50 nm in diameter are reproduced much better compared to when only binary nucleation in the free troposphere is assumed.


2013 ◽  
Vol 13 (20) ◽  
pp. 10385-10396 ◽  
Author(s):  
G. S. Stuart ◽  
R. G. Stevens ◽  
A.-I. Partanen ◽  
A. K. L. Jenkins ◽  
H. Korhonen ◽  
...  

Abstract. The intentional enhancement of cloud albedo via controlled sea-spray injection from ships (marine cloud brightening) has been proposed as a possible method to control anthropogenic global warming; however, there remains significant uncertainty in the efficacy of this method due to, amongst other factors, uncertainties in aerosol and cloud microphysics. A major assumption used in recent cloud- and climate-modeling studies is that all sea spray was emitted uniformly into some oceanic grid boxes, and thus these studies did not account for subgrid aerosol coagulation within the sea-spray plumes. We explore the evolution of these sea-salt plumes using a multi-shelled Gaussian plume model with size-resolved aerosol coagulation. We determine how the final number of particles depends on meteorological conditions, including wind speed and boundary-layer stability, as well as the emission rate and size distribution of aerosol emitted. Under previously proposed injection rates and typical marine conditions, we find that the number of aerosol particles is reduced by over 50%, but this reduction varies from under 10% to over 90% depending on the conditions. We provide a computationally efficient parameterization for cloud-resolving and global-scale models to account for subgrid-scale coagulation, and we implement this parameterization in a global-scale aerosol-climate model. While designed to address subgrid-scale coagulation of sea-salt particles, the parameterization is generally applicable for coagulation of subgrid-scale aerosol from point sources. We find that accounting for this subgrid-scale coagulation reduces cloud droplet number concentrations by 46% over emission regions, and reduces the global mean radiative flux perturbation from −1.5 W m−2 to −0.8 W m−2.


2018 ◽  
Author(s):  
Harri Kokkola ◽  
Thomas Kühn ◽  
Anton Laakso ◽  
Tommi Bergman ◽  
Kari E. J. Lehtinen ◽  
...  

Abstract. In this paper, we present the implementation and evaluation of the aerosol microphysics module SALSA2.0 in the framework of the aerosol-chemistry-climate model ECHAM-HAMMOZ. It is an alternative microphysics module to the default modal microphysics scheme M7 in ECHAM-HAMMOZ. The SALSA2.0 implementation is evaluated against the observations of aerosol optical properties, aerosol mass, and size distributions. We also compare the skill of SALSA2.0 in reproducing the observed quantities to the skill of the M7 implementation. The largest differences between SALSA2.0 and M7 are evident over regions where the aerosol size distribution is heavily modified by the microphysical processing of aerosol particles. Such regions are, for example, highly polluted regions and regions strongly affected by biomass burning. In addition, in a simulation of the 1991 Mt Pinatubo eruption in which a stratospheric sulfate plume was formed, the global burden and the effective radii of the stratospheric aerosol are very different in SALSA2.0 and M7. While SALSA2.0 was able to reproduce the observed time evolution of the global burden of sulfate and the effective radii of stratospheric aerosol, M7 strongly overestimates the removal of coarse stratospheric particles and thus underestimates the effective radius of stratospheric aerosol. As the mode widths of M7 have been optimized for the troposphere and were not designed to represent stratospheric aerosol the ability of M7 to simulate the volcano plume was improved by modifying the mode widths decreasing the standard deviations of the accumulation and coarse modes from 1.59 and 2.0, respectively, to 1.2. Overall, SALSA2.0 shows promise in improving the aerosol description of ECHAM-HAMMOZ and can be further improved by implementing methods for aerosol processes that are more suitable for the sectional method, e.g size dependent emissions for aerosol species and size resolved wet deposition.


2021 ◽  
Vol 21 (19) ◽  
pp. 15023-15063
Author(s):  
Charles A. Brock ◽  
Karl D. Froyd ◽  
Maximilian Dollner ◽  
Christina J. Williamson ◽  
Gregory Schill ◽  
...  

Abstract. In situ measurements of aerosol microphysical, chemical, and optical properties were made during global-scale flights from 2016–2018 as part of the Atmospheric Tomography Mission (ATom). The NASA DC-8 aircraft flew from ∼ 84∘ N to ∼ 86∘ S latitude over the Pacific, Atlantic, Arctic, and Southern oceans while profiling nearly continuously between altitudes of ∼ 160 m and ∼ 12 km. These global circuits were made once each season. Particle size distributions measured in the aircraft cabin at dry conditions and with an underwing probe at ambient conditions were combined with bulk and single-particle composition observations and measurements of water vapor, pressure, and temperature to estimate aerosol hygroscopicity and hygroscopic growth factors and calculate size distributions at ambient relative humidity. These reconstructed, composition-resolved ambient size distributions were used to estimate intensive and extensive aerosol properties, including single-scatter albedo, the asymmetry parameter, extinction, absorption, Ångström exponents, and aerosol optical depth (AOD) at several wavelengths, as well as cloud condensation nuclei (CCN) concentrations at fixed supersaturations and lognormal fits to four modes. Dry extinction and absorption were compared with direct in situ measurements, and AOD derived from the extinction profiles was compared with remotely sensed AOD measurements from the ground-based Aerosol Robotic Network (AERONET); this comparison showed no substantial bias. The purpose of this work is to describe the methodology by which ambient aerosol properties are estimated from the in situ measurements, provide statistical descriptions of the aerosol characteristics of different remote air mass types, examine the contributions to AOD from different aerosol types in different air masses, and provide an entry point to the ATom aerosol database. The contributions of different aerosol types (dust, sea salt, biomass burning, etc.) to AOD generally align with expectations based on location of the profiles relative to continental sources of aerosols, with sea salt and aerosol water dominating the column extinction in most remote environments and dust and biomass burning (BB) particles contributing substantially to AOD, especially downwind of the African continent. Contributions of dust and BB aerosols to AOD were also significant in the free troposphere over the North Pacific. Comparisons of lognormally fitted size distribution parameters to values in the Optical Properties of Aerosols and Clouds (OPAC) database commonly used in global models show significant differences in the mean diameters and standard deviations for accumulation-mode particles and coarse-mode dust. In contrast, comparisons of lognormal parameters derived from the ATom data with previously published shipborne measurements in the remote marine boundary layer show general agreement. The dataset resulting from this work can be used to improve global-scale representation of climate-relevant aerosol properties in remote air masses through comparison with output from global models and assumptions used in retrievals of aerosol properties from both ground-based and satellite remote sensing.


2021 ◽  
Author(s):  
Charles A. Brock ◽  
Karl D. Froyd ◽  
Maximilian Dollner ◽  
Christina J. Williamson ◽  
Gregory Schill ◽  
...  

Abstract. In situ measurements of aerosol microphysical, chemical, and optical properties were made during global-scale flights from 2016–2018 as part of the Atmospheric Tomography Mission (ATom). A NASA DC-8 aircraft flew from ~84 °N to ~86 °S latitude over the Pacific, Atlantic, Arctic, and Southern oceans while profiling nearly continuously between altitudes of ~160 m and ~12 km. These global circuits were made once each season. Particle size distributions measured in the aircraft cabin at dry conditions and with an underwing probe at ambient conditions were combined with bulk and single-particle composition observations and measurements of water vapor, pressure and temperature to estimate aerosol hygroscopicity and hygroscopic growth factors and calculate size distributions at ambient relative humidity. These reconstructed, composition-resolved ambient size distributions were used to estimate intensive and extensive aerosol properties, including single scatter albedo, asymmetry parameter, extinction, absorption, Ångström exponents, and aerosol optical depth (AOD) at several wavelengths, as well as CCN concentrations at fixed supersaturations and lognormal fits to four modes. Dry extinction and absorption were compared with direct, in situ measurements, and AOD derived from the extinction profiles was compared with remotely sensed AOD measurements from the ground-based Aerosol Robotic Network (AERONET); these calculated parameters were in agreement with the direct observations within expected uncertainties. The purpose of this work is to describe the methodology by which ambient aerosol properties are estimated from the in situ measurements, provide statistical descriptions of the aerosol characteristics of different remote air mass types, examine the contributions to AOD from different aerosol types in different air masses, and provide an entry point to the ATom aerosol database. The contributions of different aerosol types (dust, sea salt, biomass burning, etc.) to AOD generally align with expectations based on location of the profiles relative to continental sources of aerosols, with sea salt and aerosol water dominating the column extinction in most remote environments and dust and biomass burning (BB) particles contributing substantially to AOD, especially downwind of the African continent. Contributions of dust and BB aerosols to AOD were also significant in the free troposphere over the North Pacific. Comparisons of lognormally fitted size distribution parameters to values in a database commonly used in global models show significant differences in the mean diameters and standard deviations for accumulation-mode particles and coarse-mode dust. In contrast, comparisons of lognormal parameters derived from the ATom data with previously published ship-borne measurements in the remote marine boundary layer show general agreement. The dataset resulting from this work can be used to improve global-scale representation of climate-relevant aerosol properties in remote air masses through comparison with output from global models and with assumptions used in retrievals of aerosol properties from both ground-based and satellite remote sensing.


2007 ◽  
Vol 7 (5) ◽  
pp. 14939-14987 ◽  
Author(s):  
X. Ma ◽  
K. von Salzen ◽  
J. Li

Abstract. A size-dependent sea salt aerosol parameterization was developed based on the piecewise log-normal approximation (PLA) for aerosol size distributions. Results of this parameterization from simulations with a global climate model produce good agreement with observations at the surface and for vertically-integrated volume size distributions. The global and annual mean of the sea salt burden is 10.1 mg m−2. The direct radiative forcing is calculated to be −1.52 and −0.60 W m−2 for clear sky and all sky, respectively. The first indirect radiative forcing is about twice as large as the direct forcing for all-sky (−1.34 W m−2). The results also show that the total indirect forcing of sea salt is −2.9 W m−2 if climatic feedbacks are taken into account. The sensitivity of the forcings to changes in the burdens and sizes of sea salt particles was also investigated based on additional simulations with a different sea salt source function.


2008 ◽  
Vol 8 (5) ◽  
pp. 1311-1327 ◽  
Author(s):  
X. Ma ◽  
K. von Salzen ◽  
J. Li

Abstract. A size-dependent sea salt aerosol parameterization was developed based on the piecewise log-normal approximation (PLA) for aerosol size distributions. Results of this parameterization from simulations with a global climate model produce good agreement with observations at the surface and for vertically-integrated volume size distributions. The global and annual mean of the sea salt burden is 10.1 mg m−2. The direct radiative forcing is calculated to be −1.52 and −0.60 W m−2 for clear sky and all sky, respectively. The first indirect radiative forcing is about twice as large as the direct forcing for all-sky (−1.34 W m−2). The results also show that the total indirect forcing of sea salt is −2.9 W m−2 if climatic feedbacks are taken into account. The sensitivity of the forcings to changes in the burdens and sizes of sea salt particles was also investigated based on additional simulations with a different sea salt source function.


2012 ◽  
Vol 5 (3) ◽  
pp. 709-739 ◽  
Author(s):  
X. Liu ◽  
R. C. Easter ◽  
S. J. Ghan ◽  
R. Zaveri ◽  
P. Rasch ◽  
...  

Abstract. A modal aerosol module (MAM) has been developed for the Community Atmosphere Model version 5 (CAM5), the atmospheric component of the Community Earth System Model version 1 (CESM1). MAM is capable of simulating the aerosol size distribution and both internal and external mixing between aerosol components, treating numerous complicated aerosol processes and aerosol physical, chemical and optical properties in a physically-based manner. Two MAM versions were developed: a more complete version with seven lognormal modes (MAM7), and a version with three lognormal modes (MAM3) for the purpose of long-term (decades to centuries) simulations. In this paper a description and evaluation of the aerosol module and its two representations are provided. Sensitivity of the aerosol lifecycle to simplifications in the representation of aerosol is discussed. Simulated sulfate and secondary organic aerosol (SOA) mass concentrations are remarkably similar between MAM3 and MAM7. Differences in primary organic matter (POM) and black carbon (BC) concentrations between MAM3 and MAM7 are also small (mostly within 10%). The mineral dust global burden differs by 10% and sea salt burden by 30–40% between MAM3 and MAM7, mainly due to the different size ranges for dust and sea salt modes and different standard deviations of the log-normal size distribution for sea salt modes between MAM3 and MAM7. The model is able to qualitatively capture the observed geographical and temporal variations of aerosol mass and number concentrations, size distributions, and aerosol optical properties. However, there are noticeable biases; e.g., simulated BC concentrations are significantly lower than measurements in the Arctic. There is a low bias in modeled aerosol optical depth on the global scale, especially in the developing countries. These biases in aerosol simulations clearly indicate the need for improvements of aerosol processes (e.g., emission fluxes of anthropogenic aerosols and precursor gases in developing countries, boundary layer nucleation) and properties (e.g., primary aerosol emission size, POM hygroscopicity). In addition, the critical role of cloud properties (e.g., liquid water content, cloud fraction) responsible for the wet scavenging of aerosol is highlighted.


2013 ◽  
Vol 70 (10) ◽  
pp. 3063-3083 ◽  
Author(s):  
Robert M. Rauber ◽  
Guangyu Zhao ◽  
Larry Di Girolamo ◽  
Marilé Colón-Robles

Abstract This paper examines the effect of trade wind cumulus clouds on aerosol properties in the near-cloud environment using data from the Rain in Cumulus over the Ocean (RICO) campaign. Aerosol size distributions, particle concentrations, and optical properties are examined as a function of altitude and distance from cloud, at ambient relative humidity (RH) and adjusted to a constant RH to isolate effects of humidification from other processes. The cloud humidity halo extended about 1500–2000 m from the cloud edge, with no clear altitude dependence on horizontal extent over an altitude range of 600–1700 m. The combined effects of vertical transport of aerosol by clouds and cloud processing contributed to the modification of aerosol size distributions within the clouds' humidity halos, particularly close to the cloud boundaries. Backscatter at 532 nm, calculated from the aerosol properties, exhibited no distinguishable trend with altitude within 400 m of cloud edges, increased toward lower altitudes beyond 400 m, and decreased away from cloud boundaries at all altitudes. The mean aerosol diameter was found to rapidly decline from 0.8 to 0.4 μm from near the cloud boundary to the boundary of the humidity halo. Aerosol optical depth at 532 nm within the layer between 600 and 1700 m increased near exponentially from 0.02 to 0.2 toward the cloud boundaries within the humidity halo. These trends agreed qualitatively with past space-based lidar measurements of trade wind cloud margins, although quantitative differences were noted that likely arose from different sampling strategies and other factors.


2017 ◽  
Author(s):  
Alexandra P. Tsimpidi ◽  
Vlassis A. Karydis ◽  
Spyros N. Pandis ◽  
Jos Lelieveld

Abstract. Organic compounds from combustion sources such as biomass burning and fossil fuel use are major contributors to the global atmospheric load of aerosols. We analyzed the sensitivity of model-predicted global-scale organic aerosols (OA) to parameters that control primary emissions, photochemical aging and the scavenging efficiency of organic vapors. We used a computationally efficient module for the description of OA composition and evolution in the atmosphere (ORACLE) of the global chemistry-climate model EMAC. A global dataset of aerosol mass spectrometer measurements was used to evaluate simulated primary (POA) and secondary OA (SOA) concentrations. Model results are sensitive to the emission rates of intermediate volatility organic compounds (IVOCs) and POA. Assuming enhanced reactivity of semi-volatile organic compounds (SVOCs) and IVOCs with OH substantially improved the model performance for SOA. Use of a hybrid approach for the parameterization of the aging of IVOCs had a small effect on predicted SOA levels. The model performance improved by assuming that freshly emitted organic compounds are relatively hydrophobic and become increasingly hygroscopic due to oxidation.


Sign in / Sign up

Export Citation Format

Share Document