scholarly journals A new dataset for systematic assessments of climate change impacts as a function of global warming

2012 ◽  
Vol 5 (4) ◽  
pp. 3533-3572 ◽  
Author(s):  
J. Heinke ◽  
S. Ostberg ◽  
S. Schaphoff ◽  
K. Frieler ◽  
C. Müller ◽  
...  

Abstract. In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

2013 ◽  
Vol 6 (5) ◽  
pp. 1689-1703 ◽  
Author(s):  
J. Heinke ◽  
S. Ostberg ◽  
S. Schaphoff ◽  
K. Frieler ◽  
C. Müller ◽  
...  

Abstract. In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere–Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.


2019 ◽  
Author(s):  
Inne Vanderkelen ◽  
Jakob Zschleischler ◽  
Lukas Gudmundsson ◽  
Klaus Keuler ◽  
Francois Rineau ◽  
...  

Abstract. Ecotron facilities allow accurate control of many environmental variables coupled with extensive monitoring of ecosystem processes. They therefore require multivariate perturbation of climate variables, close to what is observed in the field and projections for the future, preserving the co-variances between variables and the projected changes in variability. Here we present a new experimental design for studying climate change impacts on terrestrial ecosystems and apply it to the UHasselt Ecotron Experiment. The new methodology consists of generating climate forcing along a gradient representative of increasingly high global mean temperature anomalies and uses data derived from the best available regional climate model (RCM) projection. We first identified the best performing regional climate model (RCM) simulation for the ecotron site from the Coordinated Regional Downscaling Experiment in the European Domain (EURO-CORDEX) ensemble with a 0.11° (12.5 km) resolution based on two criteria: (i) highest skill of the simulations compared to observations from a nearby weather station and (ii) representativeness of the multi-model mean in future projections. Our results reveal that no single RCM simulation has the best score for all possible combinations of the four meteorological variables and evaluation metrics considered. Out of the six best performing simulations, we selected the simulation with the lowest bias for precipitation (CCLM4-8-17/EC-EARTH), as this variable is key to ecosystem functioning and model simulations deviated the most for this variable, with values ranging up to double the observed values. The time window is subsequently selected from the RCM projection for each ecotron unit based on the global mean temperature of the driving Global Climate Model (GCM). The ecotron units are forced with 3-hourly output from the RCM projections of the five-year period spanning the year in which the global mean temperature crosses the predefined values. With the new approach, Ecotron facilities become able to assess ecosystem responses on changing climatic conditions, while accounting for the co-variation between climatic variables and their projection in variability, well representing possible compound events. The gradient approach will allow to identify possible threshold and tipping points.


2011 ◽  
Vol 15 (3) ◽  
pp. 897-912 ◽  
Author(s):  
N. W. Arnell

Abstract. This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example – change in summer runoff at a 2 °C increase in global mean temperature varying between −40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1 °C, but there are differences between catchments. Based on the scenarios represented in the ensemble, the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.


2010 ◽  
Vol 7 (5) ◽  
pp. 7633-7667 ◽  
Author(s):  
N. W. Arnell

Abstract. This paper assesses the relationship between amount of climate forcing – as indexed by global mean temperature change – and hydrological response in a sample of UK catchments. It constructs climate scenarios representing different changes in global mean temperature from an ensemble of 21 climate models assessed in the IPCC AR4. The results show a considerable range in impact between the 21 climate models, with – for example – change in summer runoff at a 2 °C increase in global mean temperature varying between −40% and +20%. There is evidence of clustering in the results, particularly in projected changes in summer runoff and indicators of low flows, implying that the ensemble mean is not an appropriate generalised indicator of impact, and that the standard deviation of responses does not adequately characterise uncertainty. The uncertainty in hydrological impact is therefore best characterised by considering the shape of the distribution of responses across multiple climate scenarios. For some climate model patterns, and some catchments, there is also evidence that linear climate change forcings produce non-linear hydrological impacts. For most variables and catchments, the effects of climate change are apparent above the effects of natural multi-decadal variability with an increase in global mean temperature above 1 °C, but there are differences between catchments. Based on the scenarios represented in the ensemble, it is likely that the effect of climate change in northern upland catchments will be seen soonest in indicators of high flows, but in southern catchments effects will be apparent soonest in measures of summer and low flows. The uncertainty in response between different climate model patterns is considerably greater than the range due to uncertainty in hydrological model parameterisation.


Author(s):  
Douglas G. MacMartin ◽  
Ken Caldeira ◽  
David W. Keith

Solar geoengineering has been suggested as a tool that might reduce damage from anthropogenic climate change. Analysis often assumes that geoengineering would be used to maintain a constant global mean temperature. Under this scenario, geoengineering would be required either indefinitely (on societal time scales) or until atmospheric CO 2 concentrations were sufficiently reduced. Impacts of climate change, however, are related to the rate of change as well as its magnitude. We thus describe an alternative scenario in which solar geoengineering is used only to constrain the rate of change of global mean temperature; this leads to a finite deployment period for any emissions pathway that stabilizes global mean temperature. The length of deployment and amount of geoengineering required depends on the emissions pathway and allowable rate of change, e.g. in our simulations, reducing the maximum approximately 0.3°C per decade rate of change in an RCP 4.5 pathway to 0.1°C per decade would require geoengineering for 160 years; under RCP 6.0, the required time nearly doubles. We demonstrate that feedback control can limit rates of change in a climate model. Finally, we note that a decision to terminate use of solar geoengineering does not automatically imply rapid temperature increases: feedback could be used to limit rates of change in a gradual phase-out.


2010 ◽  
Vol 23 (9) ◽  
pp. 2307-2319 ◽  
Author(s):  
Rita Seiffert ◽  
Jin-Song von Storch

Abstract The climate response to increased CO2 concentration is generally studied using climate models that have finite spatial and temporal resolutions. Different parameterizations of the effect of unresolved processes can result in different representations of small-scale fluctuations in the climate model. The representation of small-scale fluctuations can, on the other hand, affect the modeled climate response. In this study the mechanisms by which enhanced small-scale fluctuations alter the climate response to CO2 doubling are investigated. Climate experiments with preindustrial and doubled CO2 concentrations obtained from a comprehensive climate model [ECHAM5/Max Planck Institute Ocean Model (MPI-OM)] are analyzed both with and without enhanced small-scale fluctuations. By applying a stochastic model to the experimental results, two different mechanisms are found. First, the small-scale fluctuations can change the statistical behavior of the global mean temperature as measured by its statistical damping. The statistical damping acts as a restoring force that determines, according to the fluctuation–dissipation theory, the amplitude of the climate response to a change in external forcing (here, CO2 doubling). Second, the small-scale fluctuations can affect processes that occur only in response to the CO2 increase, thereby altering the change of the effective forcing on the global mean temperature.


2012 ◽  
Vol 46 (16) ◽  
pp. 8868-8877 ◽  
Author(s):  
Marianne Tronstad Lund ◽  
Veronika Eyring ◽  
Jan Fuglestvedt ◽  
Johannes Hendricks ◽  
Axel Lauer ◽  
...  

2018 ◽  
Vol 9 (2) ◽  
pp. 459-478 ◽  
Author(s):  
Erik Kjellström ◽  
Grigory Nikulin ◽  
Gustav Strandberg ◽  
Ole Bøssing Christensen ◽  
Daniela Jacob ◽  
...  

Abstract. We investigate European regional climate change for time periods when the global mean temperature has increased by 1.5 and 2 °C compared to pre-industrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth-phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under the RCP8.5 forcing scenario. The results indicate considerable near-surface warming already at the lower 1.5 °C of warming. Regional warming exceeds that of the global mean in most parts of Europe, being the strongest in the northernmost parts of Europe in winter and in the southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, which are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are already seen at 1.5 °C of warming but are larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread among individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent show decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure, indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results, leading either to attenuation or amplification of the climate change signal in the underlying GCMs. We find that the RCMs tend to produce less warming and more precipitation (or less drying) in many areas in both winter and summer.


2017 ◽  
Author(s):  
Erik Kjellström ◽  
Grigory Nikulin ◽  
Gustav Strandberg ◽  
Ole Bøssing Christensen ◽  
Daniela Jacob ◽  
...  

Abstract. We investigate European regional climate change for time periods when the global mean temperature has increased by respectively 1.5 °C and 2 °C compared to preindustrial conditions. Results are based on regional downscaling of transient climate change simulations for the 21st century with global climate models (GCMs) from the fifth phase Coupled Model Intercomparison Project (CMIP5). We use an ensemble of EURO-CORDEX high-resolution regional climate model (RCM) simulations undertaken at a computational grid of 12.5 km horizontal resolution covering Europe. The ensemble consists of a range of RCMs that have been used for downscaling different GCMs under different forcing scenarios. The results indicate considerable near-surface warming already at the lower 1.5 °C warming. Regional warming exceeds that of the global mean in most parts of Europe, strongest in northernmost parts of Europe in winter and in southernmost parts of Europe together with parts of Scandinavia in summer. Changes in precipitation, that are less robust than the ones in temperature, include increases in the north and decreases in the south with a borderline that migrates from a northerly position in summer to a southerly one in winter. Some of these changes are seen already at 1.5 °C warming but larger and more robust at 2 °C. Changes in near-surface wind speed are associated with a large spread between individual ensemble members at both warming levels. Relatively large areas over the North Atlantic and some parts of the continent shows decreasing wind speed while some ocean areas in the far north show increasing wind speed. The changes in temperature, precipitation and wind speed are shown to be modified by changes in mean sea level pressure indicating a strong relationship with the large-scale circulation and its internal variability on decade-long timescales. By comparing to a larger ensemble of CMIP5 GCMs we find that the RCMs can alter the results leading either to attenuation of amplification of the climate change signal in the underlying GCMs. We find that the RCMs tend to produce less warming and more precipitation (or less drying) in many areas in both winter and summer.


Sign in / Sign up

Export Citation Format

Share Document