scholarly journals Soil water storage and groundwater behaviour in a catenary sequence beneath forest in central Amazonia: I. Comparisons between plateau, slope and valley floor

1997 ◽  
Vol 1 (2) ◽  
pp. 265-277 ◽  
Author(s):  
M. G. Hodnett ◽  
I. Vendrame ◽  
A. De O. Marques Filho ◽  
M. D. Oyama ◽  
J. Tomasella

Abstract. Soil water storage was monitored in three landscape elements in the forest (plateau, slope and valley floor) over a 3 year period to identify differences in sub-surface hydrological response. Under the plateau and slope, the changes of storage were very similar and there was no indication of surface runoff on the slope. The mean maximum seasonal storage change was 156 mm in the 2 m profile but it was clear that, in the dry season, the forest was able to take up water from below 3.6 m. Soil water availability was low. Soil water storage changes in the valley were dominated by the behaviour of a shallow water table which, in normal years, varied between 0.1 m below the surface at the end of the wet season and 0.8 m at the end of the dry season. Soil water storage changes were small because root uptake was largely replenished by groundwater flow towards the stream. The groundwater behaviour is controlled mainly by the deep drainage from beneath the plateau and slope areas. The groundwater gradient beneath the slope indicated that recharge beneath the plateau and slope commences only after the soil water deficits from the previous dry season have been replenished. Following a wet season with little recharge, the water table fell, ceasing to influence the valley soil water storage, and the stream dried up. The plateau and slope, a zone of very high porosity between 0.4 and 1.1 m, underlain by a less conductive layer, is a probable route for interflow during, and for a few hours after, heavy and prolonged rainfall.

1997 ◽  
Vol 1 (2) ◽  
pp. 279-290 ◽  
Author(s):  
M. G. Hodnett ◽  
I. Vendrame ◽  
A. De O. Marques Filho ◽  
M. D. Oyama ◽  
J. Tomasella

Abstract. Valley floor groundwater level data collected during the ABRACOS project (Gash et al. 1996), and published streamflow data from small forested catchments in geomorphologically similar areas nearby have been analysed to improve the understanding of the processes of streamflow generation. Early in the wet season, the floodplain water table is typically at 0.8 m depth, or less, and receives only local, vertical recharge. Large storms may create a groundwater ridge beneath the floodplain, temporarily creating a gradient in the direction of the hilislope. Later in the wet season, floodplain water levels are controlled primarily by the discharge of groundwater which maintains the dry season streamflow. The groundwater is recharged by deep drainage from beneath the plateau and slope areas once the dry season soil water deficit has been overcome. In the late wet season, the water level is almost at the floodplain surface and may create seeps on the lower slopes in very wet years. For the period 1966-1989, the recharge was estimated to range from 290 mm to 1601 mm with a mean of 1087 mm. Published data show that baseflow is 91% of annual runoff. Stormflow is generated on the floodplain, and water table recessions after rainfall events show that the runoff response depends on the depth to the water table. These results are from areas with deeply weathered and permeable soils; in areas of Amazonia with shallower soils, the predominant flow generation processes will differ (Elsenbeer and Lack, 1996).


2004 ◽  
Vol 68 (3) ◽  
pp. 719-724 ◽  
Author(s):  
Mahmood Nachabe ◽  
Caroline Masek ◽  
Jayantha Obeysekera

2000 ◽  
Vol 80 (1) ◽  
pp. 43-52 ◽  
Author(s):  
David R. Lapen ◽  
Jonathan S. Price ◽  
Robert Gilbert

Time domain reflectometry (TDR) was used to estimate soil water storage dynamics in several uncultivated blanket bogs and poor fens in southeastern Newfoundland during the summer growing season. The purpose of the research was to evaluate links between surface moisture conditions, evapotranspiration, and recharge processes in order to elucidate factors that govern blanket peat formation in the region. Water storage changes in the peat/Sphagnum above the water table (ΔSWS) were found to be important storage terms in daily water balance estimates. Daily mean ΔSWS values for bog and fen approximated −0.3 and −0.45 mm, respectively. It was also found that, i) fairly high peat water-holding capacities, ii) frequent atmospheric recharge, iii) atmospheric controls on evapotranspiration, and, iv) the transport of water into the unsaturated zone from the shallow water table via capillary and external wicking processes helped to preclude significant de-watering over the bulk of the peatland surfaces. Recharge via groundwater appears to be an important factor governing moisture conditions requisite for peat accrual and the growth of Sphagnum spp., especially in the fens. Key words: Time domain reflectometry, blanket peats, soil water, evapotranspiration, water table depth


2010 ◽  
Vol 67 (1) ◽  
pp. 87-95 ◽  
Author(s):  
Durval Dourado-Neto ◽  
Quirijn de Jong van Lier ◽  
Klaas Metselaar ◽  
Klaus Reichardt ◽  
Donald R. Nielsen

The original Thornthwaite and Mather method, proposed in 1955 to calculate a climatic monthly cyclic soil water balance, is frequently used as an iterative procedure due to its low input requirements and coherent estimates of water balance components. Using long term data sets to establish a characteristic water balance of a location, the initial soil water storage is generally assumed to be at field capacity at the end of the last month of the wet season, unless the climate is (semi-) arid when the soil water storage is lower than the soil water holding capacity. To close the water balance, several iterations might be necessary, which can be troublesome in many situations. For (semi-) arid climates with one dry season, Mendonça derived in 1958 an equation to quantify the soil water storage monthly at the end of the last month of the wet season, which avoids iteration procedures and closes the balance in one calculation. The cyclic daily water balance application is needed to obtain more accurate water balance output estimates. In this note, an equation to express the water storage for the case of the occurrence of more than one dry season per year is presented as a generalization of Mendonça's equation, also avoiding iteration procedures.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Mandana Rahgozar ◽  
Nirjhar Shah ◽  
Mark Ross

Simultaneous measurements of soil moisture profiles and water table heads, along a flow path, were used to determine evapotranspiration (ET) along with other components of the water budget. The study was conducted at a small-scale (~0.8 Km2) hydrologic monitoring field site in Hillsborough County, Florida, from January 2002 to June 2004. Frequency Domain Reflectometry soil moisture probes, installed in close proximity to water table monitoring wells were used to derive changes in the soil water storage. A one-dimensional transect model was developed; changes in the soil water storage and water table observations served as input to determine all vertical and lateral boundary fluxes along the shallow water table flow plane. Two distinct land cover environments, grassland and an alluvial wetland forest, were investigated in this particular study. The analysis provided temporally variable ET estimates for the two land covers with annual totals averaging 850 mm for grassland, to 1100 mm for the alluvial wetland forest. Quantitative estimates of other components of a water budget, for example, infiltration, interception capture, total rainfall excess, and runoff were also made on a quarterly and annual basis. Novelty of this approach includes ability to resolve ET components and other water budget fluxes that provide useful parameterization and calibration potential for predictive simulation models.


2016 ◽  
Vol 20 (6) ◽  
pp. 2421-2435 ◽  
Author(s):  
Vicente Iñiguez ◽  
Oscar Morales ◽  
Felipe Cisneros ◽  
Willy Bauwens ◽  
Guido Wyseure

Abstract. The Neotropical Andean grasslands above 3500 m a.s.l., known as páramo, offer remarkable ecological services for the Andean region. The most important of these is the water supply of excellent quality to many cities and villages in the inter-Andean valleys and along the coast. The páramo ecosystem and especially its soils are under constant and increased threat by human activities and climate change. In this study, the recovery speed of the páramo soils after drought periods are analysed. The observation period includes the droughts of 2009, 2010, 2011, and 2012 together with intermediate wet periods. Two experimental catchments – one with and one without páramo – were investigated. The Probability Distributed Moisture (PDM) model was calibrated and validated in both catchments. Drought periods and its characteristics were identified and quantified by a threshold level approach and complemented by means of a drought propagation analysis. At the plot scale in the páramo region, the soil water content measured by time domain reflectometry (TDR) probes dropped from a normal value of about 0.84 to  ∼ 0.60 cm3 cm−3, while the recovery time was 2–3 months. This did not occur at lower altitudes (Cumbe) where the soils are mineral. Although the soil moisture depletion observed in these soils was similar to that of the Andosols (27 %), decreasing from a normal value of about 0.54 to  ∼ 0.39 cm3 cm−3, the recovery was much slower and took about 8 months for the drought in 2010. At the catchment scale, however, the soil water storage simulated by the PDM model and the drought analysis was not as pronounced. Soil moisture droughts occurred mainly in the dry season in both catchments. The deficit for all cases is small and progressively reduced during the wet season. Vegetation stress periods correspond mainly to the months of September, October and November, which coincides with the dry season. The maximum number of consecutive dry days were reached during the drought of 2009 and 2010 (19 and 22 days), which can be considered to be a long period in the páramo. The main factor in the hydrological response of these experimental catchments is the precipitation relative to the potential evapotranspiration. As the soils never became extremely dry nor close to the wilting point, the soil water storage capacity had a secondary influence.


2013 ◽  
Vol 49 (3) ◽  
pp. 366-381
Author(s):  
B. BUAKUM ◽  
V. LIMPINUNTANA ◽  
N. VORASOOT ◽  
K. PANNANGPETCH ◽  
R. W. BELL

SUMMARYDeep sowing (15 cm) on sands in the dry season is a practice used in post-rice sowing of legumes without irrigation, designed to increase moisture access for germination, growth and crops yield. However, with such deep sowing there can be a penalty for emergence and growth if there is abundant water stored in the upper soil profile during the growing season. Hence, there is a need to define the soil water regimes under which deep sowing is advantageous for different legumes. To investigate the adaptation of legume crop species to deep sowing, we studied their emergence, growth and yield on three deep soils (3–16% clay) with shallow water tables during two years in northeast Thailand. At site 1 and 2, peanut, cowpea, mungbean and soybean were sown shallow (~5 cm) or deep (~15 cm). At site 3, only cowpea and peanut were shallow or deep sown. Shallow water tables maintained soil water content (0–15 cm) above permanent wilting point throughout the growing season. Deep sowing of all legumes delayed emergence by 3–7 days at all locations. Shoot dry weight of legumes after deep sowing was mostly similar or lower than weight after shallow sowing. Yield and harvest index of legumes did not differ meaningfully among sowing depths. Therefore, deep sowing was not beneficial for dry season cropping without irrigation when there was a shallow water table and sufficient water for crop growth throughout soil profiles in the growing season. Taken together with previous studies, we conclude that shallow rather than deep sowing of legumes was preferred when the soil water content at 0–15-cm depth remained higher than permanent wilting point throughout the growing season due to shallow water table.


2015 ◽  
Vol 63 (1) ◽  
pp. 82-92 ◽  
Author(s):  
Martin Wegehenkel ◽  
Horst H. Gerke

Abstract Weighing lysimeters can be used for studying the soil water balance and to analyse evapotranspiration (ET). However, not clear was the impact of the bottom boundary condition on lysimeter results and soil water movement. The objective was to analyse bottom boundary effects on the soil water balance. This analysis was carried out for lysimeters filled with fine- and coarse-textured soil monoliths by comparing simulated and measured data for lysimeters with a higher and a lower water table. The eight weighable lysimeters had a 1 m2 grass-covered surface and a depth of 1.5 m. The lysimeters contained four intact monoliths extracted from a sandy soil and four from a soil with a silty-clay texture. For two lysimeters of each soil, constant water tables were imposed at 135 cm and 210 cm depths. Evapotranspiration, change in soil water storage, and groundwater recharge were simulated for a 3-year period (1996 to 1998) using the Hydrus-1D software. Input data consisted of measured weather data and crop model-based simulated evaporation and transpiration. Snow cover and heat transport were simulated based on measured soil temperatures. Soil hydraulic parameter sets were estimated (i) from soil core data and (ii) based on texture data using ROSETTA pedotransfer approach. Simulated and measured outflow rates from the sandy soil matched for both parameter sets. For the sand lysimeters with the higher water table, only fast peak flow events observed on May 4, 1996 were not simulated adequately mainly because of differences between simulated and measured soil water storage caused by ET-induced soil water storage depletion. For the silty-clay soil, the simulations using the soil hydraulic parameters from retention data (i) were matching the lysimeter data except for the observed peak flows on May, 4, 1996, which here probably resulted from preferential flow. The higher water table at the lysimeter bottom resulted in higher drainage in comparison with the lysimeters with the lower water table. This increase was smaller for the finer-textured soil as compared to the coarser soil.


Sign in / Sign up

Export Citation Format

Share Document