scholarly journals Towards modelling flood protection investment as a coupled human and natural system

2014 ◽  
Vol 18 (1) ◽  
pp. 155-171 ◽  
Author(s):  
P. E. O'Connell ◽  
G. O'Donnell

Abstract. Due to a number of recent high-profile flood events and the apparent threat from global warming, governments and their agencies are under pressure to make proactive investments to protect people living in floodplains. However, adopting a proactive approach as a universal strategy is not affordable. It has been argued that delaying expensive and essentially irreversible capital decisions could be a prudent strategy in situations with high future uncertainty. This paper firstly uses Monte Carlo simulation to explore the performance of proactive and reactive investment strategies using a rational cost–benefit approach in a natural system with varying levels of persistence/interannual variability in annual maximum floods. It is found that, as persistence increases, there is a change in investment strategy optimality from proactive to reactive. This could have implications for investment strategies under the increasingly variable climate that is expected with global warming. As part of the emerging holistic approaches to flood risk management, there is increasing emphasis on stakeholder participation in determining where and when flood protection investments are made, and so flood risk management is becoming more people-centred. As a consequence, multiple actors are involved in the decision-making process, and the social sciences are assuming an increasingly important role in flood risk management. There is a need for modelling approaches which can couple the natural and human system elements. It is proposed that coupled human and natural system (CHANS) modelling could play an important role in understanding the motivations, actions and influence of citizens and institutions and how these impact on the effective delivery of flood protection investment. A framework for using agent-based modelling of human activities leading to flood investments is outlined, and some of the challenges associated with implementation are discussed.

2013 ◽  
Vol 10 (6) ◽  
pp. 8279-8323 ◽  
Author(s):  
P. E. O'Connell ◽  
G. O'Donnell

Abstract. Due to a number of recent high profile flood events and the apparent threat from global warming, governments and their agencies are under pressure to make proactive investments to protect people living in floodplains. However, adopting a proactive approach as a universal strategy is not affordable. It has been argued that delaying expensive and essentially irreversible capital decisions could be a prudent strategy in situations with high future uncertainty. This paper firstly uses Monte Carlo simulation to explore the performance of proactive and reactive investment strategies using a rational cost-benefit approach in a natural system with varying levels of persistence/interannual variability in Annual Maximum Floods. It is found that, as persistence increases, there is a change in investment strategy optimality from proactive to reactive. This could have implications for investment strategies under the increasingly variable climate that is expected with global warming. As part of the emerging holistic approaches to flood risk management, there is increasing emphasis on stakeholder participation in determining where and when flood protection investments are made, and so flood risk management is becoming more people-centred. As a consequence, multiple actors are involved in the decision-making process, and the social sciences are assuming an increasingly important role in flood risk management. There is a need for modelling approaches which can couple the natural and human system elements. It is proposed that Coupled Human and Natural System (CHANS) modelling could play an important role in understanding the motivations, actions and influence of citizens and institutions and how these impact on the effective delivery of flood protection investment. A framework for using Agent Based Modelling of human activities leading to flood investments is outlined, and some of the challenges associated with implementation are discussed.


2020 ◽  
Author(s):  
B. Thanga Gurusamy ◽  
Avinash D Vasudeo ◽  
Aniruddha Dattatraya Ghare

<p><strong>Abstract: </strong>Because of the uncertainty and high cost involved, the Absolute Flood Protection has not been considered as a rational decision. Hence the trend is to replace Absolute Flood Protection strategy by Flood Risk Management Strategy. This Paper focus on the development of Multiple Criteria Decision Making (MCDM) model towards Flood Risk Management (FRM) across Godavari Lower Sub-Basin of India using GIS based methodologies for Flood Hazard Zonation in order to achieve global minimum of the Flood predicted Risk level.  Flood Hazard Zone Map for the historical flood events obtained with the use of GIS based Digital Elevation Models across the study area have been presented and used for the estimation of Hazard Risk. Uncertainty (or Control) Risk levels of each Flood estimated using various Flood Forecasting methodologies have been compared for the selected locations of the study area. Effectiveness of Passive Flood Protection Measures in the form of Flood Levees has been quantitatively analyzed for the increase in the Opportunity Risk and corresponding reduction in the Flood Hazard Risk. Various types of Multi-Objective Evolutionary Algorithms (MOEAs) have been used  to determine a Compromise solution with conflicting criteria between Hazard Risk and Opportunity (or Investment) Risk and the results were compared for each of the selected levels of Flood estimated with corresponding uncertainty. Traditional optimization method in the form of Pareto-Optimal Front have also been graphically depicted for the minimization of both Hazard Risk Objective function and Opportunity Risk Objective Function and compared with those obtained using MOEAs. Watershed wise distribution of optimized Flood Risk variation across the Sub-basin has been presented graphically for both the cases of with and without active Flood Routing Measures. <strong>Keywords:  </strong>Flood Risk Management; GIS based Flood Hazard Zonation; Multi-Criteria Decision Making; Multi-Objective Evolutionary Algorithms; Godavari Lower Sub-Basin of India;</p>


2021 ◽  
Vol 15 ◽  
pp. 27-32
Author(s):  
Erika Beilicci ◽  
Robert Beilicci ◽  
Ioan David

Water Framework Directive and Flood Directive of European Commission establishes the need for preparation of flood risk maps for each member country on each important hydrographic basins. Based on these established the flood risk management plan (must be finalized by end of 2015), which is a communicator and disseminator tool of the knowledge gained during two previous stages across the horizontal structures of governmental and non-governmental bodies dealing with flood protection, flood mitigation and flood struggle in general. Flood risk management plans, considered as a communicator and disseminator tool across the horizontal structures of governmental and non-governmental bodies dealing with flood protection, flood mitigation and flood struggle in general. They mainly include proposals on how to reduce the losses of lives, property and environmental through flood prevention, protection of vulnerable areas and increased flood preparedness in each river basin. The way of processing of this flood risk management plans on IT platforms changes the information stream flow. Future development plans of regions and cities will get a proper guidance and platforms for future feasibility studies. In Romania, each state institution wants to improve the skills of their employees. There is a lack of specialists who has enough knowledge about the hydroinformatics, thus in everyday work there is a very limited use of such tool, meanwhile the work with complex problems has generated recently a need to use valuable tool.


Author(s):  
O. M. Kozytskyi ◽  
S. A. Shevchuk ◽  
I. A. Shevchenko

Background of the study. Due to the increasing intensity and frequency of catastrophic floods occurrence, one of the most important tasks of the water management of Ukraine is to increase the efficiency of the existing system of flood protection due to the implementation of integrated flood risk management methods based on the assessment of flood hazard levels requirements according to Directive 2007/60/EC. The development of scientific and methodological bases for the assessment and mapping of flood hazard and risk levels, as well as the development of integrated flood risk management plans based on them, is an important and urgent task in Ukraine as an associated EU member. The purpose of the work is to highlight the main works results, performed at the Institute on the study of patterns of riverbed transformations, the development of strategies for flood risk management and scientific and methodological support of the assessment and mapping of flood hazard and risk, taking into account the nature and the intensity of river bed transformation and exogenous processes in river basins of Ukraine. Outline of the main material. Systematic research on flood protection issues and river bed evolution in IWPaLR has been conducted since the middle of the last century. The problems of the dynamics of river bed’s evolutions, ensuring the stability of dams, erosion of the tail water of dam, development of active hydraulic structures and their arrangement in river beds, forecasting river bed evolution, runoffs, development study of permissible (nondestructive) flow velocities for alluvial soils, taking into account the phenomenon of self-patching of the river bed, the dynamic equilibrium of the beds, the typing of the beds of mountain rivers, etc., were studied and solved under the natural conditions and in the hydraulic laboratory of the Institute. Based on the results of theoretical and experimental studies of river bed evolution, a number of methodological provisions on the complex regulation of channel deformations and safe passage of high floods were formulated and published a number of regulatory and methodological documents on the calculation and forecasting of river bed transformations, designing of dams and protection structures. An important role was given to the issues of regulation and redistribution of floodwater by the system of river reservoirs and replenishment of groundwater reserves. The methodological recommendations for sampling of river bed deposits and sediments, on the base of the international ISO standards’ requirements and recommendations of have been developed at the Institute, as well as the method of estimation of the river bed transformation’s dynamics, for the discrete and quantitative assessments of river bed deformations and their intensity. The paper also highlights the main results of work on the implementation of the Flood Directive 2007/60/EC in Ukraine, in particular, the development of a Flood Risk Management Strategy in the Ukrainian Carpathian River basins. In the Strategy declared the latest approaches to flood response, which foresee the abandonment of the current paradigm of "flood protection" to favor integrated flood risk management. It defines national mechanisms of strategic management in the field of flood risk reduction, directions of transboundary cooperation, coordination of works within river basins. For the future development of this Strategy, the paper presents the scientific and methodological bases for a comprehensive assessment of the total levels of flood hazard and flood risk and their mapping on a GIS basis. Conclusion. In the future, scientific research on integrated flood risk management should focus on the study of patterns of evolution of river bed and development of mathematical models of regulation of channel deformations, improvement of the flood forecasting and prevention methodology based on simulation modeling, as well as the development new management schemes for runoff ‘s regulation.


2020 ◽  
Author(s):  
Michele Ferri ◽  
Uta Wehn ◽  
Linda See ◽  
Martina Monego ◽  
Steffen Fritz

Abstract. Citizen observatories are a relatively recent form of citizen science. As part of the flood risk management strategy of the Brenta-Bacchiglione catchment, a citizen observatory for flood risk management has been proposed and is currently being implemented. Citizens are involved through monitoring water levels and obstructions and providing other relevant information through mobile apps, where the data are assimilated with other sensor data in a hydrological-hydraulic model used in early warning. A cost benefit analysis of the citizen observatory was undertaken to demonstrate the value of this approach in monetary terms. Although not yet fully operational, the citizen observatory is assumed to decrease the social vulnerability of the flood risk. By calculating the hazard, exposure and vulnerability of three flood scenarios (required for flood risk management planning by the EU Directive on Flood Risk Management) with and without the proposed citizen observatory, it is possible to evaluate the benefits in terms of the average annual avoided damage costs. Although currently a hypothetical exercise, the results showed a reduction in avoided damage of 45 % compared to a business as usual scenario. Thus, linking citizen science with hydrological modelling, and to raise awareness of flood hazards, has great potential in reducing future flood risk in the Brenta-Bacchiglione catchment. Moreover, such approaches are easily transferable to other catchments.


Author(s):  
Jelena MALAHOVA ◽  
Daina VASIĻEVSKA ◽  
Karlis KETNERS

Flood risk management is the process of data and information gathering, risk analysis and evaluation, appraisal of options, and making, implementing and reviewing decisions to reduce, control, accept or redistribute the flood risks. It is a continuous process of analysis, adjustment and adaptation of policies and actions taken to reduce the flood risk. Preventive measures and timely, reasonable flood risk prevention measures can help reduce the risk of floods and caused damages. In addition, protection against floods is primarily necessary for populated areas, especially when it comes to densely populated areas, since floods may affect a large number of citizens and their property thereby causing enormous material damage not only to the inhabitants of these territories but also to business infrastructure, respectively, it can result in significant material and socioeconomic losses. The aim of the paper is to evaluate the flood risk management theoretical and practical aspects, identify the potential impact of floods on natural and socioeconomic environment, as well as to show the usefulness of flood risk reduction measures. To reach this aim, the following tasks must be fulfilled: to give the definitions of flooding and flood risk and briefly characterise the flooding and flood risk in Latvia; to study and characterize the flood risk management legal and institutional aspects; to carry out an analytical overview of the flood risk assessment on right bank of the Daugava River in Riga; to carry out a cost-benefit analysis of flood risk prevention measures on the right bank of the Daugava in Riga.


Sign in / Sign up

Export Citation Format

Share Document