scholarly journals Correction of systematic model forcing bias of CLM using assimilation of cosmic-ray Neutrons and land surface temperature: a study in the Heihe Catchment, China

2015 ◽  
Vol 19 (1) ◽  
pp. 615-629 ◽  
Author(s):  
X. Han ◽  
H.-J. H. Franssen ◽  
R. Rosolem ◽  
R. Jin ◽  
X. Li ◽  
...  

Abstract. The recent development of the non-invasive cosmic-ray soil moisture sensing technique fills the gap between point-scale soil moisture measurements and regional-scale soil moisture measurements by remote sensing. A cosmic-ray probe measures soil moisture for a footprint with a diameter of ~ 600 m (at sea level) and with an effective measurement depth between 12 and 76 cm, depending on the soil humidity. In this study, it was tested whether neutron counts also allow correcting for a systematic error in the model forcings. A lack of water management data often causes systematic input errors to land surface models. Here, the assimilation procedure was tested for an irrigated corn field (Heihe Watershed Allied Telemetry Experimental Research – HiWATER, 2012) where no irrigation data were available as model input although for the area a significant amount of water was irrigated. In the study, the measured cosmic-ray neutron counts and Moderate-Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) products were jointly assimilated into the Community Land Model (CLM) with the local ensemble transform Kalman filter. Different data assimilation scenarios were evaluated, with assimilation of LST and/or cosmic-ray neutron counts, and possibly parameter estimation of leaf area index (LAI). The results show that the direct assimilation of cosmic-ray neutron counts can improve the soil moisture and evapotranspiration (ET) estimation significantly, correcting for lack of information on irrigation amounts. The joint assimilation of neutron counts and LST could improve further the ET estimation, but the information content of neutron counts exceeded the one of LST. Additional improvement was achieved by calibrating LAI, which after calibration was also closer to independent field measurements. It was concluded that assimilation of neutron counts was useful for ET and soil moisture estimation even if the model has a systematic bias like neglecting irrigation. However, also the assimilation of LST helped to correct the systematic model bias introduced by neglecting irrigation and LST could be used to update soil moisture with state augmentation.

2014 ◽  
Vol 11 (7) ◽  
pp. 9027-9066 ◽  
Author(s):  
X. Han ◽  
H.-J. Hendricks Franssen ◽  
R. Rosolem ◽  
R. Jin ◽  
X. Li ◽  
...  

Abstract. The recent development of the non-invasive cosmic-ray soil moisture sensing technique fills the gap between point scale soil moisture measurements and regional scale soil moisture measurements by remote sensing. A cosmic-ray probe measures soil moisture for a footprint with a diameter of ~600 m (at sea level) and with an effective measurement depth between 12 and 76 cm, depending on the soil humidity. In this study, it was tested whether neutron counts also allow to correct for a systematic error in the model forcings. Lack of water management data often cause systematic input errors to land surface models. Here, the assimilation procedure was tested for an irrigated corn field (Heihe Watershed Allied Telemetry Experimental Research – HiWATER, 2012) where no irrigation data were available as model input although the area a significant amount of water was irrigated. Measured cosmic-ray neutron counts and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) products were jointly assimilated into the Community Land Model (CLM) with the Local Ensemble Transform Kalman Filter. Different data assimilation scenarios were evaluated, with assimilation of LST and/or cosmic-ray neutron counts, and possibly parameter estimation of leaf area index (LAI). The results show that the direct assimilation of cosmic-ray neutron counts can improve the soil moisture and evapotranspiration (ET) estimation significantly, correcting for lack of information on irrigation amounts. The joint assimilation of neutron counts and LST could improve further the ET estimation, but the information content of neutron counts exceeded the one of LST. Additional improvement was achieved by calibrating LAI, which after calibration was also closer to independent field measurements. It was concluded that assimilation of neutron counts was useful for ET and soil moisture estimation even if the model has a systematic bias like neglecting irrigation. However, also the assimilation of LST helped to correct the systematic model bias introduced by neglecting irrigation and LST could be used to update soil moisture with state augmentation.


Land ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 388
Author(s):  
Azad Rasul ◽  
Sa’ad Ibrahim ◽  
Ajoke R. Onojeghuo ◽  
Heiko Balzter

Although the way in which vegetation phenology mediates the feedback of vegetation to climate systems is now well understood, the magnitude of these changes is still unknown. A thorough understanding of how the recent shift in phenology may impact on, for example, land surface temperature (LST) is important. To address this knowledge gap, it is important to quantify these impacts and identify patterns from the global to the regional scale. This study examines the trend and linear regression modeling of the leaf area index (LAI) and LST derived from the moderate resolution imaging spectroradiometer (MODIS) data, specifically to assess their spatial distribution and changing trends at the continental and regional scales. The change detection analysis of interannual variability in the global LAI and LST between two periods (2003–2010 and 2011–2018) demonstrates more positive LAI trends than negative, while for LST most changes were not significant. The relationships between LAI and LST were assessed across the continents to ascertain the response of vegetation to changes in LST. The regression between LAI and LST was negative in Australia (R2 = 0.487 ***), positive but minimal in Africa (R2 = 0.001), positive in North America (R2 = 0.641 ***), negative in Central America (R2 = 0.119), positive in South America (R2 = 0.253 *) and positive in Europe (R2 = 0.740 ***). Medium temperatures enhance photosynthesis and lengthen the growing season in Europe. We also found a significant greening trend in China (trendp = 0.16 ***) and India (trendp = 0.13 ***). The relationships between LAI and LST in these most prominent greening countries of the world are R2 = 0.06 and R2 = 0.25 for China and India, respectively. Our deductions here are twofold—(1) In China, an insignificant association appeared between greening trend and temperature. (2) In India, the significant greening trend may be a factor in lowering temperatures. Therefore, temperature may stabilize if the greening trend continues. We attribute the trends in both countries to the different land use management and climate mitigation policies adopted by these countries.


2015 ◽  
Vol 8 (8) ◽  
pp. 7395-7444 ◽  
Author(s):  
X. Han ◽  
X. Li ◽  
G. He ◽  
P. Kumbhar ◽  
C. Montzka ◽  
...  

Abstract. Data assimilation has become a popular method to integrate observations from multiple sources with land surface models to improve predictions of the water and energy cycles of the soil-vegetation-atmosphere continuum. Multivariate data assimilation refers to the simultaneous assimilation of observation data from multiple model state variables into a simulation model. In recent years, several land data assimilation systems have been developed in different research agencies. Because of the software availability or adaptability, these systems are not easy to apply for the purpose of multivariate land data assimilation research. We developed an open source multivariate land data assimilation framework (DasPy) which is implemented using the Python script language mixed with the C++ and Fortran programming languages. LETKF (Local Ensemble Transform Kalman Filter) is implemented as the main data assimilation algorithm, and uncertainties in the data assimilation can be introduced by perturbed atmospheric forcing data, and represented by perturbed soil and vegetation parameters and model initial conditions. The Community Land Model (CLM) was integrated as the model operator. The implementation allows also parameter estimation (soil properties and/or leaf area index) on the basis of the joint state and parameter estimation approach. The Community Microwave Emission Modelling platform (CMEM), COsmic-ray Soil Moisture Interaction Code (COSMIC) and the Two-Source Formulation (TSF) were integrated as observation operators for the assimilation of L-band passive microwave, cosmic-ray soil moisture probe and land surface temperature measurements, respectively. DasPy has been evaluated in several assimilation studies of neutron count intensity (soil moisture), L-band brightness temperature and land surface temperature. DasPy is parallelized using the hybrid Message Passing Interface and Open Multi-Processing techniques. All the input and output data flows are organized efficiently using the commonly used NetCDF file format. Online 1-D and 2-D visualization of data assimilation results is also implemented to facilitate the post simulation analysis. In summary, DasPy is a ready to use open source parallel multivariate land data assimilation framework.


Author(s):  
E. Natsagdorj ◽  
T. Renchin ◽  
P. De Maeyer ◽  
B. Tseveen ◽  
C. Dari ◽  
...  

<p><strong>Abstract.</strong> Soil moisture (SM) content is one of the most important environmental variables in relation to land surface climatology, hydrology, and ecology. Long-term SM data-sets on a regional scale provide reasonable information about climate change and global warming specific regions. The aim of this research work is to develop an integrated methodology for SM of kastanozems soils using multispectral satellite data. The study area is Tuv (48°40′30″N and 106°15′55″E) province in the forest steppe zones in Mongolia. In addition to this, land surface temperature (LST) and normalized difference vegetation index (NDVI) from Landsat satellite images were integrated for the assessment. Furthermore, we used a digital elevation model (DEM) from ASTER satellite image with 30-m resolution. Aspect and slope maps were derived from this DEM. The soil moisture index (SMI) was obtained using spectral information from Landsat satellite data. We used regression analysis to develop the model. The model shows how SMI from satellite depends on LST, NDVI, DEM, Slope, and Aspect in the agricultural area. The results of the model were correlated with the ground SM data in Tuv province. The results indicate that there is a good agreement between output SM and SM of ground truth for agricultural area. Further research is focused on moisture mapping for different natural zones in Mongolia. The innovative part of this research is to estimate SM using drivers which are vegetation, land surface temperature, elevation, aspect, and slope in the forested steppe area. This integrative methodology can be applied for different regions with forest and desert steppe zones.</p>


2019 ◽  
Vol 11 (17) ◽  
pp. 2016
Author(s):  
Lijuan Wang ◽  
Ni Guo ◽  
Wei Wang ◽  
Hongchao Zuo

FY-4A is a second generation of geostationary orbiting meteorological satellite, and the successful launch of FY-4A satellite provides a new opportunity to obtain diurnal variation of land surface temperature (LST). In this paper, different underlying surfaces-observed data were applied to evaluate the applicability of the local split-window algorithm for FY-4A, and the local split-window algorithm parameters were optimized by the artificial intelligent particle swarm optimization (PSO) algorithm to improve the accuracy of retrieved LST. Results show that the retrieved LST can efficiently reproduce the diurnal variation characteristics of LST. However, the estimated values deviate hugely from the observed values when the local split-window algorithms are directly used to process the FY-4A satellite data, and the root mean square errors (RMSEs) are approximately 6K. The accuracy of the retrieved LST cannot be effectively improved by merely modifying the emissivity-estimated model or optimizing the algorithm. Based on the measured emissivity, the RMSE of LST retrieved by the optimized local split-window algorithm is reduced to 3.45 K. The local split-window algorithm is a simple and easy retrieval approach that can quickly retrieve LST on a regional scale and promote the application of FY-4A satellite data in related fields.


2019 ◽  
Author(s):  
Bouchra Ait Hssaine ◽  
Olivier Merlin ◽  
Jamal Ezzahar ◽  
Nitu Ojha ◽  
Salah Er-raki ◽  
...  

Abstract. Thermal-based two-source energy balance modeling is very useful for estimating the land evapotranspiration (ET) at a wide range of spatial and temporal scales. However, the land surface temperature (LST) is not sufficient for constraining simultaneously both soil and vegetation flux components in such a way that assumptions (on either the soil or the vegetation fluxes) are commonly required. To avoid such assumptions, a new energy balance model (TSEB-SM) was recently developed in Ait Hssaine et al. (2018a) to integrate the microwave-derived near-surface soil moisture (SM), in addition to the thermal-derived LST and vegetation cover fraction (fc). Whereas, TSEB-SM has been recently tested using in-situ measurements, the objective of this paper is to evaluate the performance of TSEB-SM in real-life using 1 km resolution MODIS (Moderate resolution imaging spectroradiometer) LST and fc data and the 1 km resolution SM data disaggregated from SMOS (Soil Moisture and Ocean Salinity) observations by using DisPATCh. The approach is applied during a four-year period (2014–2018) over a rainfed wheat field in the Tensift basin, central Morocco, during a four-year period (2014–2018). The field was seeded for the 2014–2015 (S1), 2016–2017 (S2) and 2017–2018 (S3) agricultural season, while it was not ploughed (remained as bare soil) during the 2015–2016 (B1) agricultural season. The mean retrieved values of (arss, brss) calculated for the entire study period using satellite data are (7.32, 4.58). The daily calibrated αPT ranges between 0 and 1.38 for both S1 and S2. Its temporal variability is mainly attributed to the rainfall distribution along the agricultural season. For S3, the daily retrieved αPT remains at a mostly constant value (∼ 0.7) throughout the study period, because of the lack of clear sky disaggregated SM and LST observations during this season. Compared to eddy covariance measurements, TSEB driven only by LST and fc data significantly overestimates latent heat fluxes for the four seasons. The overall mean bias values are 119, 94, 128 and 181 W/m2 for S1, S2, S3 and B1 respectively. In contrast, these errors are much reduced when using TSEB-SM (SM and LST combined data) with the mean bias values estimated as 39, 4, 7 and 62 W/m2 for S1, S2, S3 and B1 respectively.


Sign in / Sign up

Export Citation Format

Share Document