scholarly journals The geomorphological unit hydrograph – a critical review

1998 ◽  
Vol 2 (1) ◽  
pp. 1-8 ◽  
Author(s):  
A. Y. Shamseldin ◽  
J. E. Nash

Abstract. The theory of the geomorphological unit hydrograph (GUH) is examined critically and it is shown that the inherent assumption that the operation of the drainage network may be modelled by a corresponding network of linear reservoirs so restricts the instantaneous unit hydrograph (IUH) shape that the effects of further restrictions, reflecting the constraints imposed by the geomorphological laws of the channel network, cannot easily be identified. Without such identification, the geomorphological unit hydrograph theory is untestable and must remain only a plausible hypothesis providing an indication of a two-parameter IUH whose shape and scale factors must still be related empirically to appropriate catchment characteristics.

1971 ◽  
Vol 2 (1) ◽  
pp. 23-46 ◽  
Author(s):  
EDMUND F. SCHULZ ◽  
SUBIN PINKAYAN ◽  
CHUMPORN KOMSARTRA

The characteristics of dimensionless unit hydrographs were derived from floods from watersheds smaller than 1000 square kilometers located in Thailand. The dimensionless unit hydrographs were expressed as ratios of q/qq as a function of t/tp. These dimensionless unit hydrographs were compared with similar unit hydrographs derived from floods on Taiwan and with the unit hydrographs derived from a mathematical model developed from the two parameter gamma function developed from the theory of the instantaneous unit hydrograph. It was found that the unit hydrographs derived from the Thai watersheds had much longer base length and much longer time to peak than similar unit hydrographs derived from floods on Taiwan. This increase in length of response time is attributed to a larger component of subsurface runoff believed to be present in the floods from tropical watersheds.


2015 ◽  
Vol 48 (2) ◽  
pp. 91-103
Author(s):  
Joo-Cheol Kim ◽  
◽  
Kwansue Jung ◽  
Dong Kug Jeong

1985 ◽  
Vol 16 (1) ◽  
pp. 1-10 ◽  
Author(s):  
V. P. Singh ◽  
C. Corradini ◽  
F. Melone

The geomorphological instantaneous unit hydrograph (IUH) proposed by Gupta et al. (1980) was compared with the IUH derived by commonly used time-area and Nash methods. This comparison was performed by analyzing the effective rainfall-direct runoff relationship for four large basins in Central Italy ranging in area from 934 to 4,147 km2. The Nash method was found to be the most accurate of the three methods. The geomorphological method, with only one parameter estimated in advance from the observed data, was found to be little less accurate than the Nash method which has two parameters determined from observations. Furthermore, if the geomorphological and Nash methods employed the same information represented by basin lag, then they produced similar accuracy provided the other Nash parameter, expressed by the product of peak flow and time to peak, was empirically assessed within a wide range of values. It was concluded that it was more appropriate to use the geomorphological method for ungaged basins and the Nash method for gaged basins.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3122
Author(s):  
Leonardo Primavera ◽  
Emilia Florio

The possibility to create a flood wave in a river network depends on the geometric properties of the river basin. Among the models that try to forecast the Instantaneous Unit Hydrograph (IUH) of rainfall precipitation, the so-called Multifractal Instantaneous Unit Hydrograph (MIUH) by De Bartolo et al. (2003) rather successfully connects the multifractal properties of the river basin to the observed IUH. Such properties can be assessed through different types of analysis (fixed-size algorithm, correlation integral, fixed-mass algorithm, sandbox algorithm, and so on). The fixed-mass algorithm is the one that produces the most precise estimate of the properties of the multifractal spectrum that are relevant for the MIUH model. However, a disadvantage of this method is that it requires very long computational times to produce the best possible results. In a previous work, we proposed a parallel version of the fixed-mass algorithm, which drastically reduced the computational times almost proportionally to the number of Central Processing Unit (CPU) cores available on the computational machine by using the Message Passing Interface (MPI), which is a standard for distributed memory clusters. In the present work, we further improved the code in order to include the use of the Open Multi-Processing (OpenMP) paradigm to facilitate the execution and improve the computational speed-up on single processor, multi-core workstations, which are much more common than multi-node clusters. Moreover, the assessment of the multifractal spectrum has also been improved through a direct computation method. Currently, to the best of our knowledge, this code represents the state-of-the-art for a fast evaluation of the multifractal properties of a river basin, and it opens up a new scenario for an effective flood forecast in reasonable computational times.


Sign in / Sign up

Export Citation Format

Share Document