tropical watersheds
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 15)

H-INDEX

11
(FIVE YEARS 1)

2022 ◽  
Vol 19 (1) ◽  
pp. 137-163
Author(s):  
Moussa Moustapha ◽  
Loris Deirmendjian ◽  
David Sebag ◽  
Jean-Jacques Braun ◽  
Stéphane Audry ◽  
...  

Abstract. Tropical rivers emit large amounts of carbon dioxide (CO2) to the atmosphere, in particular due to large wetland-to-river carbon (C) inputs. Yet, tropical African rivers remain largely understudied, and little is known about the partitioning of C sources between wetland and well-drained ecosystems to rivers. In a first-order sub-catchment (0.6 km2) of the Nyong watershed (Cameroon 27 800 km2), we fortnightly measured C in all forms and ancillary parameters in groundwater in a well-drained forest (hereafter referred to as non-flooded forest groundwater) and in the stream. In the first-order catchment, the simple land use shared between wetland and well-drained forest, together with drainage data, allowed the partitioning of C sources between wetland and well-drained ecosystems to the stream. Also, we fortnightly measured dissolved and particulate C downstream of the first-order stream to the main stem of order 6, and we supplemented C measurements with measures of heterotrophic respiration in stream orders 1 and 5. In the first-order stream, dissolved organic and inorganic C and particulate organic C (POC) concentrations increased during rainy seasons when the hydrological connectivity with the riparian wetland increased, whereas the concentrations of the same parameters decreased during dry seasons when the wetland was shrinking. In larger streams (order > 1), the same seasonality was observed, showing that wetlands in headwaters were significant sources of organic and inorganic C for downstream rivers, even though higher POC concentration evidenced an additional source of POC in larger streams during rainy seasons that was most likely POC originating from floating macrophytes. During rainy seasons, the seasonal flush of organic matter from the wetland in the first-order catchment and from the macrophytes in higher-order rivers significantly affected downstream metabolism, as evidenced by higher respiration rates in stream order 5 (756 ± 333 gC-CO2 m−2 yr−1) compared to stream 1 (286 ± 228 gC-CO2 m−2 yr−1). In the first-order catchment, the sum of the C hydrologically exported from non-flooded forest groundwater (6.2 ± 3.0 MgC yr−1) and wetland (4.0 ± 1.5 MgC yr−1) to the stream represented 3 %–5 % of the local catchment net C sink. In the first-order catchment, non-flooded forest groundwater exported 1.6 times more C than wetland; however, when weighed by surface area, C inputs from non-flooded forest groundwater and wetland to the stream contributed to 27 % (13.0 ± 6.2 MgC yr−1) and 73 % (33.0 ± 12.4 MgC yr−1) of the total hydrological C inputs, respectively. At the Nyong watershed scale, the yearly integrated CO2 degassing from the entire river network was 652 ± 161 GgC-CO2 yr−1 (23.4 ± 5.8 MgC CO2 km−2 yr−1 when weighed by the Nyong watershed surface area), whereas average heterotrophic respiration in the river and CO2 degassing rates was 521 ± 403 and 5085 ± 2544 gC-CO2 m−2 yr−1, which implied that only ∼ 10 % of the CO2 degassing at the water–air interface was supported by heterotrophic respiration in the river. In addition, the total fluvial C export to the ocean of 191 ± 108 GgC yr−1 (10.3 ± 5.8 MgC km−2 yr−1 when weighed by the Nyong watershed surface area) plus the yearly integrated CO2 degassing from the entire river network represented ∼ 11 % of the net C sink estimated for the whole Nyong watershed. In tropical watersheds, we show that wetlands largely influence riverine C variations and budget. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wiwin Ambarwulan ◽  
Irmadi Nahib ◽  
Widiatmaka Widiatmaka ◽  
Jaka Suryanta ◽  
Sri Lestari Munajati ◽  
...  

Land degradation (LD) is an important issue worldwide because it affects food production and people’s welfare. Many factors cause land degradation, but in humid tropical areas, erosion is the main factor. More than 100 countries including Indonesia are affected by LD. Watershed management should be prioritized owing to budget constraints, while on the other side, the area affected by LD is very large compared to the size of the existing land area. The middle Citarum sub-watershed (MCSW) is one of the most degraded drylands in Indonesia, where the environment can be considered a typical humid tropical watershed. The objective of this study was to map degraded lands and prioritize restoration using a combined approach of the universal soil loss equation (USLE), the analytical hierarchy process (AHP) and geographic information systems (GIS) in a multiple-criteria decision analysis (MCDA) environment. The severity of LD was estimated quantitatively by analyzing the parameters of land use and land cover, slope, soil erosion, productivity, and management. The results indicated that the MCSW is dominated by the potentially degraded land classes (38%), followed by the degraded land classes (21%). The prioritization of LD restoration is suggested in the area of very high and high degraded land. The method developed in this research work could be adopted as a tool to guide decision-makers toward sustainable land resource management in humid tropical watersheds affected by LD.


2021 ◽  
Vol 278 ◽  
pp. 111521
Author(s):  
Natchaya Namngam ◽  
Wenchao Xue ◽  
Xun Liu ◽  
Thammarat Kootattep ◽  
Rajendra P. Shrestha ◽  
...  
Keyword(s):  

Water resources planning and management of a region requires an understanding of the water balance in the region. The Soil and Water Assessment Tool (SWAT) with QGIS interface (QSWAT) has been used here to arrive at the water balance components in the Palapuzha watershed of Valapattanam river basin in Kerala. Valapattanam river drains an area of 1867 sq.km. with 456 sq.km. area in Karnataka State. The river basin receives an average annual rainfall of 3600 mm. The Palapuzha watershed drains an area of 237.25 sq.km with an average annual rainfall of 4562 mm. The QSWAT model has been calibrated and validated using data for a period of eight years (2000-2007) for which both rainfall and streamflow data are available. The model was successful in simulating monthly streamflow during the calibration and validation periods with Nash Sutcliffe efficiency and correlation co-efficient greater than 0.75 and percent bias less than 10%, showing that the model is very good for predicting streamflow in Valapattanam river basin. This calibrated model was used to arrive at the different water balance components in the Palapuzha watershed. The results obtained will be useful for the sustainable development and planning of the water resources system in the highland humid tropical watersheds


Author(s):  
Kayon S. C. Barrett ◽  
Foday M. Jaward

This exploratory review synthesizes current knowledge on the use, exposures and environmental fates of PBDEs, dioxins and dioxin-like chemicals, and current-use pesticides, as well as purports the potential for forests and climate change to affect their fates at the catchment scale in tropical regions. Organic compounds such as these are under global scrutiny because of their widespread distribution and potential for adverse health impacts. PBDEs and current-use pesticides are produced for their beneficial services as flame retardants and pest controls, respectively, whereas dioxins and furans are the by-products of combustion events involving many organic compounds. However, these chemicals distribute to various environmental media and are associated with adverse health effects, including neurotoxicity and carcinogenicity. Previous studies have shown that temperate and boreal forests influence the environmental fates of some organic chemicals by transferring them from the atmosphere to the soils, therefore potentially reducing atmospheric exposure. Changing climate variables, such as temperature change, are also expected to be important in the environmental distribution of organic contaminants. However, the effect of these factors, forests and climate change, on the environmental fates of organic pollutants in tropical watersheds have not been adequately examined. Knowledge of the fates and impacts of organic pollutants in tropical regions is critical for environmental management and policy development therein, and this review therefore explores the potential influences of forests and climate change on contaminant fates in tropical regions. Finally, the areas where more research is needed to assist in these endeavors are elucidated.


Author(s):  
Fibor J. Tan ◽  
Francis Aldrine A. Uy ◽  
Cris Edward F. Monjardin ◽  
Chennie Carissa A. Caja ◽  
Roa Shalemar R. Pornasdoro ◽  
...  

2020 ◽  
Vol 9 (5) ◽  
pp. e100953262 ◽  
Author(s):  
Roberto Avelino Cecílio ◽  
Wesley Augusto Campanharo ◽  
Sidney Sara Zanetti ◽  
Amanda Tan Lehr ◽  
Alessandra Cunha Lopes

Hydrologic simulation is an important tool for the planning and management of water resources. However, the lack of input data, particularly soil and climate data, frequently complicates the application of hydrological models in Brazilian Atlantic Rainforest basins. The purpose of this study was to analyse the application of the VIC model, under the condition of low data availability, to predict the daily streamflow of two basins (Jucu and Santa Maria da Vitória). The results showed satisfactory statistical indexes only for the Santa Maria da Vitória basin. Due to data limitations and the simplified forms used to estimate these missing data, the model proved promising for understanding the hydrologic regime of these basins.


Sign in / Sign up

Export Citation Format

Share Document