scholarly journals Stem–root flow effect on soil–atmosphere interactions and uncertainty assessments

2016 ◽  
Vol 20 (4) ◽  
pp. 1509-1522
Author(s):  
Tzu-Hsien Kuo ◽  
Jen-Ping Chen ◽  
Yongkang Xue

Abstract. Rainfall that reaches the soil surface can rapidly move into deeper layers in the form of bulk flow through the stem–root flow mechanism. This study developed the stem–root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land–atmospheric interactions. The SSiB model was tested in a single-column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX–Mobilhy (HAPEX) measurements in France. The results show that stem–root flow generally caused a decrease in soil moisture in the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in substantial changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem–root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem–root flow substantially affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could be either positive or negative depending on the relative changes in the soil moisture of the top soil vs. deeper soil layers due to stem–root flow and soil moisture diffusion processes.

2015 ◽  
Vol 12 (11) ◽  
pp. 11783-11816
Author(s):  
T.-H. Kuo ◽  
J.-P. Chen ◽  
Y. Xue

Abstract. Soil water can rapidly enter deeper layers via vertical redistribution of soil water through the stem–root flow mechanism. This study develops the stem–root flow parameterization scheme and coupled this scheme with the Simplified Simple Biosphere model (SSiB) to analyze its effects on land–atmospheric interactions. The SSiB model was tested in a single column mode using the Lien Hua Chih (LHC) measurements conducted in Taiwan and HAPEX-Mobilhy (HAPEX) measurements in France. The results show that stem–root flow generally caused a decrease in the moisture content at the top soil layer and moistened the deeper soil layers. Such soil moisture redistribution results in significant changes in heat flux exchange between land and atmosphere. In the humid environment at LHC, the stem–root flow effect on transpiration was minimal, and the main influence on energy flux was through reduced soil evaporation that led to higher soil temperature and greater sensible heat flux. In the Mediterranean environment of HAPEX, the stem–root flow significantly affected plant transpiration and soil evaporation, as well as associated changes in canopy and soil temperatures. However, the effect on transpiration could either be positive or negative depending on the relative changes in the moisture content of the top soil vs. deeper soil layers due to stem–root flow and soil moisture diffusion processes.


2011 ◽  
Vol 50 (2) ◽  
pp. 457-471 ◽  
Author(s):  
Olivier Merlin ◽  
Ahmad Al Bitar ◽  
Vincent Rivalland ◽  
Pierre Béziat ◽  
Eric Ceschia ◽  
...  

Abstract Analytical expressions of evaporative efficiency over bare soil (defined as the ratio of actual to potential soil evaporation) have been limited to soil layers with a fixed depth and/or to specific atmospheric conditions. To fill the gap, a new analytical model is developed for arbitrary soil thicknesses and varying boundary layer conditions. The soil evaporative efficiency is written [0.5 − 0.5 cos(πθL/θmax)]P with θL being the water content in the soil layer of thickness L, θmax being the soil moisture at saturation, and P being a function of L and potential soil evaporation. This formulation predicts soil evaporative efficiency in both energy-driven and moisture-driven conditions, which correspond to P < 0.5 and P > 0.5, respectively. For P = 0.5, an equilibrium state is identified when retention forces in the soil compensate the evaporative demand above the soil surface. The approach is applied to in situ measurements of actual evaporation, potential evaporation, and soil moisture at five different depths (5, 10, 30, 60, and 100 cm) collected in summer at two sites in southwestern France. It is found that (i) soil evaporative efficiency cannot be considered as a function of soil moisture only because it also depends on potential evaporation, (ii) retention forces in the soil increase in reaction to an increase of potential evaporation, and (iii) the model is able to accurately predict the soil evaporation process for soil layers with an arbitrary thickness up to 100 cm. This new model representation is expected to facilitate the coupling of land surface models with multisensor (multisensing depth) remote sensing data.


2021 ◽  
Author(s):  
Belén Martí ◽  
Daniel Martínez-Villagrasa ◽  
Joan Cuxart

<p>The similarity theory equations relate the vertical turbulent flux of a variable with its vertical gradient in the surface layer. They were derived from 16-m towers (or higher) with the first measurement typically at 1 or 2 m above the surface, using pairs of values or adjusting functions to the profiles. The resulting expressions are of widespread use for multiple applications although they are supposed to be only valid over flat homogeneous terrain.</p><p>The current work applies the standard functions to a site in the centre of an east-west oriented valley, locally flat and at approximately 2 km from the mountain slopes at both sides. The area is surrounded by rain-fed agricultural fields with the upper soil layer getting dry during Summer. Momentum and sensible heat fluxes are derived with the standard similarity functions considering the Obukhov length as the stability parameter, taking measurements of wind and temperature at 2 m and a supplementary temperature observation at 0.3 m, just above the roughness sub-layer. These results are compared against the turbulent fluxes observed with an eddy-covariance system located at the same site during 8 consecutive months in 2018.</p><p>The estimated friction velocity differs less than a 20% respect to the observation for the 74% of cases under unstable conditions (61% for the stable regime). For the sensible heat flux, its goodness depends on the soil moisture. Again, a 74% of cases have a relative error below 20% for dry soils, when the observed latent heat flux is<strong> </strong>small. When soil moisture is significant, only a 24% of cases provide a sensible heat flux that differs less than a 20% from the observation. In addition, this error is positive and grows with the observed latent heat flux. For the stable regime, the number of cases with a relative error below 20% decreases to 31% and 19% for dry and moist soils, respectively.</p><p>These results show that similarity theory provides a good performance for the momentum flux over a moderately heterogeneous terrain with sloping surfaces relatively close and with observations below 2 m above the surface. For the sensible heat flux, estimations are similarly good under unstable conditions over a dry soil, while it gets over-estimated when soil moisture and, consequently, the latent heat flux are important. At night, the sensible heat flux is much smaller and thus ill estimated under the aforementioned conditions.</p>


Author(s):  
E. Z. Shamsutdinova

We have conducted investigation of the environmental function of the desert tree of black saxaul (Haloxylon aphyllum) in the Karnabchul desert. As a result, it was found that different age plants of black saxaul had different effects on the degree of illumination. The greatest influence on the intensity of solar radiation was exerted by the saxaul plant of the black middle-aged state, the least the old generative individuals. Saxaul black had a significant impact on the temperature of the air: in the daytime, especially in the period 13-16 h, reducing the temperature under the crown and on the edge of the crown, and at night increasing it in the same areas. It also had a noticeable effect on the temperature of the soil. The temperature of the soil surface under the crown at night is higher, and during the day the warming was slower than in the outer part of the saxaul crown. Under the influence of black saxaul and soil moisture changed. Under the saxaul crown soil moisture is significantly higher compared to the control (open natural pastures). The highest soil moisture was observed in the upper soil layers at the base of the saxaul trunk. As a result, under the environmental action of black saxaul more favorable hydrothermal conditions for the growth and development of natural wormwood-ephemeral vegetation under the protection of strips and adjacent areas of pastures are formed. The result of production activities chemotaxonomic postbestowal bands consists of two following components: production of fodder mass of the Haloxylon and fodder productivity of wormwood-ephemeral vegetation of natural pastures. By increasing the yield of natural pastures under the protection of pasture protection strips and the harvest of the black saxaul fodder productivity of desert pastures increases more than twice.


2007 ◽  
Vol 7 (3) ◽  
pp. 8455-8524
Author(s):  
B. Hennemuth ◽  
A. Weiss ◽  
J. Bösenberg ◽  
D. Jacob ◽  
H. Linné ◽  
...  

Abstract. A comparison study of water cycle parameters derived from ground-based remote-sensing instruments and from the regional model REMO is presented. Observational data sets were collected during three measuring campaigns in summer/autumn 2003 and 2004 at Richard Aßmann Observatory, Lindenberg, Germany. The remote sensing instruments which were used are differential absorption lidar, Doppler lidar, ceilometer, cloud radar, and micro rain radar for the derivation of humidity profiles, ABL height, water vapour flux profiles, cloud parameters, and rain rate. Additionally, surface latent and sensible heat flux and soil moisture were measured. Error ranges and representativity of the data are discussed. For comparisons the regional model REMO was run for all measuring periods with a horizontal resolution of 18 km and 33 vertical levels. Parameter output was every hour. The measured data were transformed to the vertical model grid and averaged in time in order to better fit with gridbox model values. The comparisons show that the atmospheric boundary layer is not adequately simulated, on most days it is too shallow and too moist. This is found to be caused by a wrong partitioning of energy at the surface, particularly a too large latent heat flux. The reason is obviously an overestimation of soil moisture during drying periods by the one-layer scheme in the model. The profiles of water vapour transport within the ABL appear to be realistically simulated. The comparison of cloud cover reveals an underestimation of low-level and mid-level clouds by the model, whereas the comparison of high-level clouds is hampered by the inability of the cloud radar to see cirrus clouds above 10 km. Simulated ABL clouds apparently have a too low cloud base, and the vertical extent is underestimated. The ice water content of clouds agree in model and observation whereas the liquid water content is unsufficiently derived from cloud radar reflectivity in the present study. Rain rates are similar, but the representativeness of both observations and grid box values is low.


2021 ◽  
Author(s):  
Lulu Che ◽  
Dongdong Liu ◽  
Dongli She

Abstract AimsSoil water deficit in karst mountain lands is becoming an issue of concern owing to porous, fissured, and soluble nature of underlying karst bedrock. It is important to identify feasible methods to facilitate soil water preservation in karst mountainous lands. This study aims to seek the possibility of combined utilization of moss colonization and biochar application to reduce evaporation losses in carbonate-derived laterite.MethodsThe treatments of the experiments at micro-lysimeter included four moss spore amounts (0, 30, 60, and 90 g·m−2) and four biochar application levels (0, 100, 400, and 700 g·m−3). The dynamics of moss coverage, characteristics of soil surface cracks and surface temperature field were identified. An empirical evaporation model considering the interactive effects of moss colonization and biochar application was proposed and assessed.ResultsMoss colonization reduced significantly the ratio of soil desiccation cracks. Relative cumulative evaporation decreased linearly with increasing moss coverage under four biochar application levels. Biochar application reduced critical moss coverage associated with inhibition of evaporation by 33.26%-44.34%. The empirical evaporation model enabled the calculation of soil evaporation losses under moss colonization and biochar application, with the R2 values ranging from 0.94 to 0.99.Conclusions Our result showed that the artificially cultivated moss, which was induced by moss spores and biochar, decreased soil evaporation by reducing soil surface cracks, increasing soil moisture and soil surface temperature.Moss colonization and biochar application has the potential to facilitate soil moisture conservation in karst mountain lands.


Resources ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 85
Author(s):  
Małgorzata Biniak-Pieróg ◽  
Mieczysław Chalfen ◽  
Andrzej Żyromski ◽  
Andrzej Doroszewski ◽  
Tomasz Jóźwicki

The objective of this study was the development and verification of a model of soil moisture decrease during dry spells—SMDS. The analyses were based on diurnal information of the occurrence of atmospheric precipitation and diurnal values of soil moisture under a bare soil surface, covering the period of 2003–2019, from May until October. A decreasing exponential trend was used for the description of the rate of moisture decrease in six layers of the soil profile during dry spells. The least squares method was used to determine, for each dry spell and soil depth, the value of exponent α , which described the rate of soil moisture decrease. Data from the years 2003–2015 were used for the identification of parameter α of the model for each of the layers separately, while data from 2016–2019 were used for model verification. The mean relative error between moisture values measured in 2016–2019 and the calculated values was 3.8%, and accepted as sufficiently accurate. It was found that the error of model fitting decreased with soil layer depth, from 8.1% for the surface layer to 1.0% for the deepest layer, while increasing with the duration of the dry spell at the rate of 0.5%/day. The universality of the model was also confirmed by verification made with the use of the results of soil moisture measurements conducted in the years 2009–2019 at two other independent locations. However, it should be emphasized that in the case of the surface horizon of soil, for which the process of soil drying is a function of factors occurring in the atmosphere, the developed model may have limited application and the obtained results may be affected by greater errors. The adoption of calculated values of coefficient α as characteristic for the individual measurement depths allowed calculation of the predicted values of moisture as a function of the duration of a dry spell, relative to the initial moisture level adopted as 100%. The exponential form of the trend of soil moisture changes in time adopted for the analysis also allowed calculation of the duration of a hypothetical dry spell t, after which soil moisture at a given depth drops from the known initial moisture θ0 to the predicted moisture θ. This is an important finding from the perspective of land use.


2018 ◽  
Author(s):  
Reinhard Fromm ◽  
Sonja Baumgärtner ◽  
Georg Leitinger ◽  
Erich Tasser ◽  
Peter Höller

Abstract. Snow gliding is a key factor for snow glide avalanche formation and soil erosion. This study considers atmospheric and snow variables, vegetation characteristics, and soil properties, and determines their relevance for snow gliding at a test site (Wildkogel, Upper Pinzgau, Austria) during winter 2014/15. The time-dependent data were collected at a high temporal resolution. In addition to conventional sensors a snow melt analyzer was used. The analysis shows that the soil moisture at the soil surface had the largest influence on snow gliding during the first part of the winter (October to January). The soil moisture 1.5 cm below the soil surface was the second important variable in the first part of the winter, and the most important variable in the second part of the winter (February to May). A negative influence on snow gliding had the phytomass of mosses in autumn and spring caused by lower canopy heights at these sites. Furthermore, a higher portion of dwarf shrub phytomass reduces snow gliding, because its rigid structure can transfer forces to the soil. Further investigations may be focused on the freezing and melting processes in the uppermost soil layers, and at the soil surface.


2020 ◽  
Vol 12 (16) ◽  
pp. 6603
Author(s):  
Li Ma ◽  
Ming’an Shao ◽  
Tongchuan Li

Earthworms have an important influence on the terrestrial ecological environment. This study assesses the effect of different earthworm densities on soil water content (SWC) and evaporation in a laboratory experiment. Four earthworm densities (0 no-earthworm, control [C]; 207 earthworms m−2, low density [LDE]; 345 earthworms m−2, medium density [MDE]; and 690 earthworms m−2, high density [HDE]) are tested in soil columns. Results show that cumulative evaporation occurs in the decreasing order of densities: C (98.6 mm) > LDE (115.8 mm) > MDE (118.4 mm) > HDE (124.6 mm). Compared with the control, earthworm activity decreases cumulative soil evaporation by 5.0–20.9%, increases soil temperature to 0.46 °C–0.63 °C at 8:00, and decreases soil temperature to 0.21 °C–0.52 °C at 14:00 on the soil surface. Temperature fluctuations reduce with increasing earthworm densities. A negative correlation is found between cumulative soil evaporation and earthworm density (R2 = 0.969, p < 0.001). Earthworms significantly (p < 0.05) decrease the surface SWC loss (0–20 cm) soil layer but increase the subsoil SWC loss (60–100 cm) by adjusting the soil temperature and reducing soil water evaporation. Earthworm activities (burrows, casts…) improve the soil water holding ability by adjusting soil temperature and reducing soil water evaporation. Thus, the population quantity of earthworms may provide valuable ecosystem services in soil water and heat cycles to save water resources and realize sustainable agricultural development.


Sign in / Sign up

Export Citation Format

Share Document