scholarly journals Assessment of flood risk perceptions and adaptation capacity: a comparative study between rural and peri-urban areas in Greece

Author(s):  
Konstantinos Karagiorgos ◽  
Sven Fuchs ◽  
Kyriaki Kitikidou ◽  
Fotios Maris ◽  
Spyridon Paparrizos ◽  
...  

Abstract. Focusing on flood risk and the information associated with it, developing risk management plans is often overlooking public perception of the threat. The perception of risk varies in many different ways, especially between the authorities and the affected public. It is because of this disconnection that many risk management plans concerning floods have failed in the past. This paper examines the private adaptation capacity and willingness with respect to flooding in two different catchments in Greece. The catchments of Evros and East Attica show recent flood events in the past 20 years. Two case studies were undertaken, comprised of a survey questionnaire focusing on 155 and 157 individuals, from a rural (Evros) and a peri-urban (East Attica) area, respectively, and they focused on those vulnerable to periodical (rural area) and flash floods (peri-urban area). Based on the comparisons drawn from these responses, and identifying key issues to be addressed when flood risk management plans are implemented, improvements are being recommended for the social dimension surrounding such implementation.

2017 ◽  
Vol 21 (6) ◽  
pp. 3183-3198 ◽  
Author(s):  
Sven Fuchs ◽  
Konstantinos Karagiorgos ◽  
Kyriaki Kitikidou ◽  
Fotios Maris ◽  
Spyridon Paparrizos ◽  
...  

Abstract. Dealing with flood hazard and risk requires approaches rooted in both natural and social sciences, which provided the nexus for the ongoing debate on socio-hydrology. Various combinations of non-structural and structural flood risk reduction options are available to communities. Focusing on flood risk and the information associated with it, developing risk management plans is required but often overlooks public perception of a threat. The perception of risk varies in many different ways, especially between the authorities and the affected public. It is because of this disconnection that many risk management plans concerning floods have failed in the past. This paper examines the private adaptation capacity and willingness with respect to flooding in two different catchments in Greece prone to multiple flood events during the last 20 years. Two studies (East Attica and Evros) were carried out, comprised of a survey questionnaire of 155 and 157 individuals, from a peri-urban (East Attica) and a rural (Evros) area, respectively, and they focused on those vulnerable to periodic (rural area) and flash floods (peri-urban area). Based on the comparisons drawn from these responses, and identifying key issues to be addressed when flood risk management plans are implemented, improvements are being recommended for the social dimension surrounding such implementation. As such, the paper contributes to the ongoing discussion on human–environment interaction in socio-hydrology.


2012 ◽  
Vol 12 (7) ◽  
pp. 2299-2309 ◽  
Author(s):  
R. A. Bradford ◽  
J. J. O'Sullivan ◽  
I. M. van der Craats ◽  
J. Krywkow ◽  
P. Rotko ◽  
...  

Abstract. Public perception of flood risk and flood risk information is often overlooked when developing flood risk management plans. As scientists and the public at large perceive risk in very different ways, flood risk management strategies are known to have failed in the past due to this disconnect between authorities and the public. This paper uses a novel approach in exploring the role of public perception in developing flood risk communication strategies in Europe. Results are presented of extensive quantitative research of 1375 questionnaire responses from thirteen communities at risk across six European countries. The research forms part of two research projects funded under the 2nd ERA-Net CRUE Funding Initiative: URFlood and FREEMAN. Risk perception is conceptualised as a pillar of social resilience, representing an innovative approach to the issue. From this process recommendations are identified for improving flood risk management plans through public participation.


2021 ◽  
Author(s):  
Heiko Apel ◽  
Sergiy Vorogushyn ◽  
Mostafa Farrag ◽  
Nguyen Viet Dung ◽  
Melanie Karremann ◽  
...  

<p>Urban flash floods caused by heavy convective precipitation pose an increasing threat to communes world-wide due to the increasing intensity and frequency of convective precipitation caused by a warming atmosphere. Thus, flood risk management plans adapted to the current flood risk but also capable of managing future risks are of high importance. These plans necessarily need model based pluvial flood risk simulations. In an urban environment these simulations have to have a high spatial and temporal resolution in order to site-specific management solutions. Moreover, the effect of the sewer systems needs to be included to achieve realistic inundation simulations, but also to assess the effectiveness of the sewer system and its fitness to future changes in the pluvial hazard. The setup of these models, however, typically requires a large amount of input data, a high degree of modelling expertise, a long time for setting up the model setup and to finally run the simulations. Therefor most communes cannot perform this task.</p><p> In order to provide model-based pluvial urban flood hazard and finally risk assessments for a large number of communes, the model system RIM<em>urban</em> was developed. The core of the system consists of a simplified raster-based 2D hydraulic model simulating the urban surface inundation in high spatial resolution. The model is implemented on GPUs for massive parallelization. The specific urban hydrology is considered by a capacity-based simulation of the sewer system and infiltration on non-sealed surfaces, and flow routing around buildings. The model thus considers the specific urban hydrological features, but with simplified approaches. Due to these simplifications the model setup can be performed with comparatively low data requirements, which can be covered with open data in most cases. The core data required are a high-resolution DEM, a layer of showing the buildings, and a land use map.</p><p>The spatially distributed rainfall input can be derived local precipitation records, or from an analysis of weather radar records of heavy precipitation events. A catalogue of heavy rain storms all over Germany is derived based on radar observations of the past 19 years. This catalogue serves as input for pluvial risk simulations for individual communes in Germany, as well as a catalogue of possible extreme events for the current climate. Future changes in these extreme events will be estimated based on regional climate simulations of a ΔT (1.5°C, 2°C) warmer world.</p><p>RIM<em>urban</em> simulates the urban inundation caused by these events, as well as the stress on the sewer system. Based on the inundation maps the damage to residential buildings will be estimated and further developed to a pluvial urban flood risk assessment. Because of the comparatively simple model structure and low data demand, the model setup can be easily automatized and transferred to most small to medium sized communes in Europe and even beyond, if the damage estimation is modified. RIM<em>urban</em> is thus seen as a generally appölicable screening tool for urban pluvial flood risk and a starting point for adapted risk management plans.</p>


Author(s):  
Corey Hirsch ◽  
Jean-Noel Ezingeard

Achieving alignment of risk perception, assessment, and tolerance among and between management teams within an organisation is an important foundation upon which an effective enterprise information security management strategy can be built .We argue the importance of such alignment based on information security and risk assessment literature. Too often lack of alignment dampens clean execution of strategy, eroding support during development and implementation of information security programs . We argue that alignment can be achieved by developing an understanding of enterprise risk management plans and actions, risk perceptions and risk culture. This is done by examining context, context and process. We illustrate this through the case of LeCroy Corp., illustrating how LeCroy managers perceive risk in practice, and how LeCroy fosters alignment in risk perception and execution of risk management strategy as part of an overall information security program. We show that in some circumstances diversity of risk tolerance profiles aide a management teams’ function. In other circumstances, variances lead to dysfunction. We have uncovered and quantified nonlinearities and special cases in LeCroy executive management’s risk tolerance profiles.


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
George Papaioannou ◽  
Athanasios Loukas ◽  
Lampros Vasiliades

In recent decades, natural hazards have caused major disasters in natural and man-made environments. Floods are one of the most devasting natural hazards, with high levels of mortality, destruction of infrastructure, and large financial losses. This study presents a methodological approach for flood risk management at lakes and adjacent areas that is based on the implementation of the EU Floods Directive (2007/60/EC) in Greece. Contemporary engineering approaches have been used for the estimation of the inflow hydrographs. The hydraulic–hydrodynamic simulations were implemented in the following order: (a) hydrologic modeling of lake tributaries and estimation flood flow inflow to the lake, (b) flood inundation modeling of lake tributaries, (c) simulation of the lake as a closed system, (d) simulation of the lake outflows to the adjacent areas, and (e) simulation of flood inundation of rural and urban areas adjacent to the lake. The hydrologic modeling was performed using the HEC-HMS model, and the hydraulic-hydrodynamic simulations were implemented with the use of the two-dimensional HEC-RAS model. The simulations were applied to three soil moisture conditions (dry, medium and wet) and three return periods (T = 50, T = 100 and T = 1000 years) and a methodology was followed for the flood inundation modeling in urban areas. Upper and lower estimates on water depths, flow velocities and inundation areas are estimated for all inflow hydrographs and for varying roughness coefficient values. The proposed methodology presents the necessary steps and the results for the assessment of flood risk management and mapping for lake and adjacent urban and rural areas. The methodology was applied to Lake Pamvotida in Epirus, Greece, Ioannina.


2020 ◽  
Author(s):  
Konstantinos Karagiorgos ◽  
Daniel Knos ◽  
Jan Haas ◽  
Sven Halldin ◽  
Barbara Blumenthal ◽  
...  

<p>Pluvial floods are one of the most significant natural hazards in Europe causing severe damage to urban areas. Following the projected increase in extreme precipitation and the ongoing urbanization, these events play an important role in the ongoing flood risk management discussion and provoke serious risk to the public as well as to the insurance sector. However, this type of flood, remains a poorly documented phenomenon. To address this gap, Swedish Pluvial Modelling Analysis and Safety Handling (SPLASH) project aims to develop new methods and types of data that improve the possibility to value flood risk in Swedish municipalities by collaboration between different disciplines.</p><p>SPLASH project allows to investigating the impact of heavy precipitation along the entire risk modelling chain, ultimate needed for effective prevention. This study presents a pluvial flood catastrophe modelling framework to identify and assess hazard, exposure and vulnerability in urban context. An integrated approach is adopted by incorporating ‘rainfall-damage’ patterns, flood inundation modelling, vulnerability tools and risk management. The project is developed in the ‘OASIS Loss Modelling Framework’ platform, jointly with end-users from the public sector and the insurance industry.</p><p>The Swedish case study indicates that the framework presented can be considered as an important decision making tool, by establishing an area for collaboration between academia; insurance businesses and rescue services, to reduce long-term disaster risk in Sweden.</p>


Sign in / Sign up

Export Citation Format

Share Document