scholarly journals Mean Transit Times in Headwater Catchments: Insights from the Otway Ranges, Australia

Author(s):  
William Howcroft ◽  
Ian Cartwright ◽  
Uwe Morgenstern

Abstract. Understanding the timescales of water flow through catchments and the origins of stream water at different flow conditions is critical for understanding catchment behaviour and managing water resources. Here, tritium (3H) activities, major ion geochemistry and discharge data were used in conjunction with Lumped Parameter Models (LPMs) to investigate mean transit times (MTTs) and the stores of water in six headwater catchments of the Otway Ranges in southeast Australia. 3H activities of stream water ranged from 0.20 to 2.14 TU, which are far lower than those of modern local rainfall (2.4 to 3.2 TU). The 3H activities of the stream water are lowest during the low summer flows and increase with stream discharge. Calculated MTTs vary from approximately 7 to 234 years which, in many cases, exceed those reported for river systems globally. The MTT estimates, however, are subject to a number of uncertainties, including, uncertainties in the most appropriate LPM to use, aggregation errors, and uncertainty in the modern and bomb-pulse 3H activity of rainfall. These uncertainties locally result in uncertainties in MTTs of several years; however, they do not change the overall conclusions that the water in these streams has MTTs of several years to decades. There is discharge threshold of approximately 104 m3 day−1 in all catchments above which 3H activities do not increase appreciably above ~ 2.0 TU. The MTT of this 3H activity is approximately ten years, which implies that changes within the catchments, including drought, deforestation, land use and/or bush fire, would not be realised within the streams for at least a decade. A positive correlation exists between 3H activities and nitrate and sulphate concentrations within several of the catchments, which suggests that anthropogenic activities have increasingly impacted water quality at these locations over time.

2018 ◽  
Vol 22 (1) ◽  
pp. 635-653 ◽  
Author(s):  
William Howcroft ◽  
Ian Cartwright ◽  
Uwe Morgenstern

Abstract. Understanding the timescales of water flow through catchments and the sources of stream water at different flow conditions is critical for understanding catchment behaviour and managing water resources. Here, tritium (3H) activities, major ion geochemistry and streamflow data were used in conjunction with lumped parameter models (LPMs) to investigate mean transit times (MTTs) and the stores of water in six headwater catchments in the Otway Ranges of southeastern Australia. 3H activities of stream water ranged from 0.20 to 2.14 TU, which are significantly lower than the annual average 3H activity of modern local rainfall, which is between 2.4 and 3.2 TU. The 3H activities of the stream water are lowest during low summer flows and increase with increasing streamflow. The concentrations of most major ions vary little with streamflow, which together with the low 3H activities imply that there is no significant direct input of recent rainfall at the streamflows sampled in this study. Instead, shallow younger water stores in the soils and regolith are most likely mobilised during the wetter months. MTTs vary from approximately 7 to 230 years. Despite uncertainties of several years in the MTTs that arise from having to assume an appropriate LPM, macroscopic mixing, and uncertainties in the 3H activities of rainfall, the conclusion that they range from years to decades is robust. Additionally, the relative differences in MTTs at different streamflows in the same catchment are estimated with more certainty. The MTTs in these and similar headwater catchments in southeastern Australia are longer than in many catchments globally. These differences may reflect the relatively low rainfall and high evapotranspiration rates in southeastern Australia compared with headwater catchments elsewhere. The long MTTs imply that there is a long-lived store of water in these catchments that can sustain the streams over drought periods lasting several years. However, the catchments are likely to be vulnerable to decadal changes in land use or climate. Additionally, there may be considerable delay in contaminants reaching the stream. An increase in nitrate and sulfate concentrations in several catchments at high streamflows may represent the input of contaminants through the shallow groundwater that contributes to streamflow during the wetter months. Poor correlations between 3H activities and catchment area, drainage density, land use, and average slope imply that the MTTs are not controlled by a single parameter but a variety of factors, including catchment geomorphology and the hydraulic properties of the soils and aquifers.


2013 ◽  
Vol 10 (12) ◽  
pp. 15871-15914 ◽  
Author(s):  
E. Timbe ◽  
D. Windhorst ◽  
P. Crespo ◽  
H.-G. Frede ◽  
J. Feyen ◽  
...  

Abstract. Weekly samples from surface waters, springs, soil water and rainfall were collected in a 76.9 km2 mountain rain forest catchment and its tributaries in southern Ecuador. Time series of the stable water isotopes δ18O and δ2H were used to calculate mean transit times (MTTs) and the transit time distribution functions (TTDs) solving the convolution method for seven lumped parameter models. For each model setup, the Generalized Likelihood Uncertainty Estimation (GLUE) methodology was applied to find the best predictions, behavioral solutions and parameter identifiability. For the study basin, TTDs based on model types such as the Linear-Piston Flow for soil waters and the Exponential-Piston Flow for surface waters and springs performed better than more versatile equations such as the Gamma and the Two Parallel Linear Reservoirs. Notwithstanding both approaches yielded a better goodness of fit for most sites, but with considerable larger uncertainty shown by GLUE. Among the tested models, corresponding results were obtained for soil waters with short MTTs (ranging from 3 to 12 weeks). For waters with longer MTTs differences were found, suggesting that for those cases the MTT should be based at least on an intercomparison of several models. Under dominant baseflow conditions long MTTs for stream water ≥2 yr were detected, a phenomenon also observed for shallow springs. Short MTTs for water in the top soil layer indicate a rapid exchange of surface waters with deeper soil horizons. Differences in travel times between soils suggest that there is evidence of a land use effect on flow generation.


2014 ◽  
Vol 18 (4) ◽  
pp. 1503-1523 ◽  
Author(s):  
E. Timbe ◽  
D. Windhorst ◽  
P. Crespo ◽  
H.-G. Frede ◽  
J. Feyen ◽  
...  

Abstract. Weekly samples from surface waters, springs, soil water and rainfall were collected in a 76.9 km2 mountain rain forest catchment and its tributaries in southern Ecuador. Time series of the stable water isotopes δ18O and δ2H were used to calculate mean transit times (MTTs) and the transit time distribution functions (TTDs) solving the convolution method for seven lumped-parameter models. For each model setup, the generalized likelihood uncertainty estimation (GLUE) methodology was applied to find the best predictions, behavioral solutions and parameter identifiability. For the study basin, TTDs based on model types such as the linear–piston flow for soil waters and the exponential–piston flow for surface waters and springs performed better than more versatile equations such as the gamma and the two parallel linear reservoirs. Notwithstanding both approaches yielded a better goodness of fit for most sites, but with considerable larger uncertainty shown by GLUE. Among the tested models, corresponding results were obtained for soil waters with short MTTs (ranging from 2 to 9 weeks). For waters with longer MTTs differences were found, suggesting that for those cases the MTT should be based at least on an intercomparison of several models. Under dominant baseflow conditions long MTTs for stream water ≥ 2 yr were detected, a phenomenon also observed for shallow springs. Short MTTs for water in the top soil layer indicate a rapid exchange of surface waters with deeper soil horizons. Differences in travel times between soils suggest that there is evidence of a land use effect on flow generation.


2021 ◽  
Author(s):  
Heide Stein ◽  
Hans Jürgen Hahn

<p>In this study, the temporal variability of the hydrological exchange between stream water (SW) and groundwater (GW), colmation, hyporheic invertebrate fauna, organic matter (OM) and physicochemical parameters were examined for the period of one year. Sampling and measuring were conducted monthly from May 2019 to April 2020 at the Guldenbach river, a second order stream in Rhineland-Palatinate, Germany. All hyporheic samples were extracted from a depth of 15 cm below stream bottom. Colmation was measured quantitatively in the same depth.</p><p>Following the biotic and abiotic patterns found, three temporal stages of different hydrological conditions can be described:</p><ul><li>1) Strong floods, in February and March 2020 caused hydromorphological alterations of the river bed, leading to a decolmation of the hyporheic zone, a wash out of OM and hyporheic fauna. Due to high GW tables the vertical hydrological gradient (VHG) was positive indicating upwelling GW.</li> <li>2) In the months of Mai to August 2019 and April 2020, precipitation and stream discharge were lowest. Predominantly exfiltrating conditions were observed, while the amount of fine sediments (clay and silt) increased as well as colmation. High densities of hyporheic fauna, dominated by fine sediment dwelling taxa, were assessed.</li> <li>3) From September 2019 to January 2020 stream discharge was low. The VHG became increasingly negative, indicating downwelling SW. In accordance, colmation increased continuously, while densities of hyporheic invertebrates decreased and sediment dwellers became more dominant.</li> </ul><p>Precipitation, discharge events and GW table were found to be the driving factors for the annual dynamics of the hydrological exchange as well as for colmation, fauna and hydrochemistry. Electric conductivity seems a suitable indicator for the origin of water with high values in months of low precipitation and lower values after extensive precipitation events, respectively. Hyporheic fauna displayed a significant seasonality and the community structure was correlated with colmation and changes in the VHG.</p><p>This pronounced seasonality seems to be typical of many streams and should be considered for the monitoring of sediments and hyporheic habitats: Seasons with lower stream discharge are probably the most critical periods for sediment conditions.</p><p>We assume that the basic patterns of the dynamics observed basically reflect the natural situation in the catchment. However, the strength of surface run-off and the amount of fine sediments are mainly the result of anthropogenic activities and land use in the catchment.</p><p>These findings underline the significance of dynamical processes for the assessment and implementation of the Water Framework Directive.</p>


2020 ◽  
Author(s):  
Shovon Barua ◽  
Ian Cartwright ◽  
Edoardo Daly ◽  
Uwe Morgenstern

<p>Intermittent headwater catchments constitute a significant proportion of many stream networks. In semi-arid climates, intermittent headwater streams flow only following periods of sustained rainfall. There is commonly a rapid response of streamflow to rainfall; however, whether this is the input of recent rainfall or displacement of water stored in the catchments for several years is not well known. Understanding the sources and transit times of water that contribute to streamflow is important for the maintenance of stream health and predicting the response of land-use changes.</p><p>The study focuses on two intermittent streams from two contrasting land-use (pasture and forest) in southeast Australia. The native eucalyptus forests in this region were originally cleared for grazing following European settlement <sup>~</sup>180 years ago and then partially replaced by plantation in the last <sup>~</sup>15 years. Stream water and groundwater from the riparian zone adjacent to the streams were sampled between May and October 2018.</p><p>The stream water has <sup>3</sup>H activities of 1.30 to 3.17 TU in the pasture and 1.84 to 3.99 TU in the forest, with higher activities recorded during the higher winter flows. Groundwater from the riparian zone has <sup>3</sup>H activities of 0.16 to 0.79 TU in the pasture and 2.01 to 4.10 TU in the forest. Aside from one riparian zone groundwater sample, all <sup>3</sup>H activities of groundwater in the riparian zone are lower than those of recent local rainfall (<sup>~</sup>2.79 TU). The single high <sup>3</sup>H activity in riparian zone possibly reflects recharge by winter rainfall with higher <sup>3</sup>H activities.</p><p>The mean transit times (MTTs) of water were estimated using a range of tracer lumped parameter models. The riparian zone groundwater has greater MTTs of hundreds of years in the pasture and up to 9 years in the forest. At high streamflow, the stream water has MTTs of <6 years in the pasture and the forest. The MTTs of stream water at low streamflow vary from 15 to 42 years in the pasture and from 3 to 16 years in the forest. The long MTTs of water from streams indicate that the source water is not just recent rainfall, rather water stored in the riparian zone is mobilised at the commencement of flow and recent rainfall makes a larger contribution at higher flows. The observation is consistent with the major ion geochemistry of the stream water, which most closely represents that of the riparian zone groundwater. The differences in MTTs of stream water between two contrasting land-use imply that the streamflow has been being most likely impacted by land-use changes. Thus, it is necessary to improve the strategies for catchment management to protect stream health from land-use practices.</p>


2015 ◽  
Vol 12 (1) ◽  
pp. 213-243 ◽  
Author(s):  
E. M. Herndon ◽  
A. L. Dere ◽  
P. L. Sullivan ◽  
D. Norris ◽  
B. Reynolds ◽  
...  

Abstract. Solute concentrations in stream water vary with discharge in patterns that record complex feedbacks between hydrologic and biogeochemical processes. In a comparison of headwater catchments underlain by shale in Pennsylvania, USA (Shale Hills) and Wales, UK (Plynlimon), dissimilar concentration-discharge behaviors are best explained by contrasting landscape distributions of soil solution chemistry – especially dissolved organic carbon (DOC) – that have been established by patterns of vegetation. Specifically, elements that are concentrated in organic-rich soils due to biotic cycling (Mn, Ca, K) or that form strong complexes with DOC (Fe, Al) are spatially heterogeneous in pore waters because organic matter is heterogeneously distributed across the catchments. These solutes exhibit non-chemostatic "bioactive" behavior in the streams, and solute concentrations either decrease (Shale Hills) or increase (Plynlimon) with increasing discharge. In contrast, solutes that are concentrated in soil minerals and form only weak complexes with DOC (Na, Mg, Si) are spatially homogeneous in pore waters across each catchment. These solutes are chemostatic in that their stream concentrations vary little with stream discharge, likely because these solutes are released quickly from exchange sites in the soils during rainfall events. Differences in the hydrologic connectivity of organic-rich soils to the stream drive differences in concentration behavior between catchments. As such, in catchments where soil organic matter (SOM) is dominantly in lowlands (e.g., Shale Hills), bioactive elements are released to the stream early during rainfall events, whereas in catchments where SOM is dominantly in uplands (e.g., Plynlimon), bioactive elements are released later during rainfall events. The distribution of vegetation and SOM across the landscape is thus a key component for predictive models of solute transport in headwater catchments.


2019 ◽  
Vol 33 (24) ◽  
pp. 3098-3118 ◽  
Author(s):  
Nguyen Le Duy ◽  
Nguyen Viet Dung ◽  
Ingo Heidbüchel ◽  
Hanno Meyer ◽  
Markus Weiler ◽  
...  

2015 ◽  
Vol 19 (9) ◽  
pp. 3771-3785 ◽  
Author(s):  
I. Cartwright ◽  
U. Morgenstern

Abstract. Headwater streams contribute a significant proportion of the total flow to many river systems, especially during summer low-flow periods. However, despite their importance, the time taken for water to travel through headwater catchments and into the streams (the transit time) is poorly understood. Here, 3H activities of stream water are used to define transit times of water contributing to streams from the upper reaches of the Ovens River in south-east Australia at varying flow conditions. 3H activities of the stream water varied from 1.63 to 2.45 TU, which are below the average 3H activity of modern local rainfall (2.85 to 2.99 TU). The highest 3H activities were recorded following higher winter flows and the lowest 3H activities were recorded at summer low-flow conditions. Variations of major ion concentrations and 3H activities with streamflow imply that different stores of water from within the catchment (e.g. from the soil or regolith) are mobilised during rainfall events rather than there being simple dilution of an older groundwater component by event water. Mean transit times calculated using an exponential-piston flow model range from 4 to 30 years and are higher at summer low-flow conditions. Mean transit times calculated using other flow models (e.g. exponential flow or dispersion) are similar. There are broad correlations between 3H activities and the percentage of rainfall exported from each catchment and between 3H activities and Na and Cl concentrations that allow first-order estimates of mean transit times in adjacent catchments or at different times in these catchments to be made. Water from the upper Ovens River has similar mean transit times to the headwater streams implying there is no significant input of old water from the alluvial gravels. The observation that the water contributing to the headwater streams in the Ovens catchment has a mean transit time of years to decades implies that these streams are buffered against rainfall variations on timescales of a few years. However, impacts of any changes to land use in these catchments may take years to decades to manifest themselves in changes to streamflow or water quality.


2013 ◽  
Vol 17 (4) ◽  
pp. 1661-1679 ◽  
Author(s):  
M. H. Mueller ◽  
R. Weingartner ◽  
C. Alewell

Abstract. The mean transit time (MTT) of water in a catchment gives information about storage, flow paths, sources of water and thus also about retention and release of solutes in a catchment. To our knowledge there are only a few catchment studies on the influence of vegetation cover changes on base flow MTTs. The main changes in vegetation cover in the Swiss Alps are massive shrub encroachment and forest expansion into formerly open habitats. Four small and relatively steep headwater catchments in the Swiss Alps (Ursern Valley) were investigated to relate different vegetation cover to water transit times. Time series of water stable isotopes were used to calculate MTTs. The high temporal variation of the stable isotope signals in precipitation was strongly dampened in stream base flow samples. MTTs of the four catchments were 70 to 102 weeks. The strong dampening of the stable isotope input signal as well as stream water geochemistry points to deeper flow paths and mixing of waters of different ages at the catchments' outlets. MTTs were neither related to topographic indices nor vegetation cover. The major part of the quickly infiltrating precipitation likely percolates through fractured and partially karstified deeper rock zones, which increases the control of bedrock flow paths on MTT. Snow accumulation and the timing of its melt play an important role for stable isotope dynamics during spring and early summer. We conclude that, in mountainous headwater catchments with relatively shallow soil layers, the hydrogeological and geochemical patterns (i.e. geochemistry, porosity and hydraulic conductivity of rocks) and snow dynamics influence storage, mixing and release of water in a stronger way than vegetation cover or topography do.


2015 ◽  
Vol 12 (6) ◽  
pp. 5427-5463 ◽  
Author(s):  
I. Cartwright ◽  
U. Morgenstern

Abstract. Headwater streams contribute a significant proportion of the total flow to many river systems, especially during summer low-flow periods. However, despite their importance, the time taken for water to travel through headwater catchments and into the streams (the transit time) is poorly constrained. Here, 3H activities of stream water are used to define transit times of water contributing to streams from the upper reaches of the Ovens River in southeast Australia at varying flow conditions. 3H activities of the stream water varied from 1.63 to 2.45 TU, which are below the average 3H activity of modern local rainfall (~3 TU). The highest 3H activities were recorded following higher winter flows and the lowest 3H activities were recorded at summer low-flow conditions. Variations of major ion concentrations and 3H activities with streamflow imply that different stores of water from within the catchment (e.g. from the soil or regolith) are mobilised during rainfall events rather than there being simple dilution of an older groundwater component by event water. Mean transit times calculated using an exponential-piston flow model range between 5 and 31 years and are higher at summer low-flow conditions. Mean transit times calculated using other flow models (e.g. exponential flow or dispersion) are similar. There are broad correlations between 3H activities and the percentage of rainfall exported from each catchment and between 3H activities and Na and Cl concentrations that allow first-order estimates of mean transit times in adjacent catchments or at different times in these catchments to be made. Water from the upper Ovens River has similar mean transit times to the headwater streams implying there is no significant input of old water from the alluvial gravels. The observation that the water contributing to the headwater streams in the Ovens catchment has a mean transit time of years to decades implies that these streams are buffered against rainfall variations on timescales of a few years. However, impacts of any changes to landuse in these catchments may take years to decades to manifest itself in changes to streamflow or water quality.


Sign in / Sign up

Export Citation Format

Share Document