scholarly journals The challenge of forecasting impacts of flash floods: test of a simplified hydraulic approach and validation based on insurance claim data

2017 ◽  
Author(s):  
Guillaume Le Bihan ◽  
Olivier Payrastre ◽  
Eric Gaume ◽  
David Moncoulon ◽  
Frederic Pons

Abstract. Up to now, flash flood monitoring and forecasting systems, based on rainfall radar measurements and distributed rainfall-runoff models, generally aimed at estimating flood magnitudes - typically discharges or return periods – at selected river cross-sections. The approach presented here goes one step ahead by proposing an integrated forecasting chain for the direct assessment of flash flood possible impacts on inhabited areas (number of buildings at risk in the presented case studies). The proposed approach includes, in addition to a distributed rainfall-runoff model, an automatic hydraulic method suited for the computation of flood extent maps on a dense river network and over large territories. The resulting catalogue of flood extent maps is then combined with land use data to build a flood impact curve for each considered river reach: i.e. number of inundated buildings versus discharge. Theses curves are finally used to compute estimated impacts based on forecasted discharges. The approach has been extensively tested in the regions of Alès and Draguignan, located in the South of France, where well documented major flash floods recently occurred. The article presents two types of validation results. First, the automatically computed flood extent maps and corresponding water levels are tested against rating curves at available river gauging stations as well as against local reference or observed flood extent maps. Second, a rich and comprehensive insurance claim database is used to evaluate the relevance of the estimated impacts for some recent major floods.

2017 ◽  
Vol 21 (11) ◽  
pp. 5911-5928 ◽  
Author(s):  
Guillaume Le Bihan ◽  
Olivier Payrastre ◽  
Eric Gaume ◽  
David Moncoulon ◽  
Frédéric Pons

Abstract. Up to now, flash flood monitoring and forecasting systems, based on rainfall radar measurements and distributed rainfall–runoff models, generally aimed at estimating flood magnitudes – typically discharges or return periods – at selected river cross sections. The approach presented here goes one step further by proposing an integrated forecasting chain for the direct assessment of flash flood possible impacts on inhabited areas (number of buildings at risk in the presented case studies). The proposed approach includes, in addition to a distributed rainfall–runoff model, an automatic hydraulic method suited for the computation of flood extent maps on a dense river network and over large territories. The resulting catalogue of flood extent maps is then combined with land use data to build a flood impact curve for each considered river reach, i.e. the number of inundated buildings versus discharge. These curves are finally used to compute estimated impacts based on forecasted discharges. The approach has been extensively tested in the regions of Alès and Draguignan, located in the south of France, where well-documented major flash floods recently occurred. The article presents two types of validation results. First, the automatically computed flood extent maps and corresponding water levels are tested against rating curves at available river gauging stations as well as against local reference or observed flood extent maps. Second, a rich and comprehensive insurance claim database is used to evaluate the relevance of the estimated impacts for some recent major floods.


2010 ◽  
Vol 10 (4) ◽  
pp. 805-817 ◽  
Author(s):  
P.-A. Versini ◽  
E. Gaume ◽  
H. Andrieu

Abstract. This paper presents an initial prototype of a distributed hydrological model used to map possible road inundations in a region frequently exposed to severe flash floods: the Gard region (South of France). The prototype has been tested in a pseudo real-time mode on five recent flash flood events for which actual road inundations have been inventoried. The results are promising: close to 100% probability of detection of actual inundations, inundations detected before they were reported by the road management field teams with a false alarm ratios not exceeding 30%. This specific case study differs from the standard applications of rainfall-runoff models to produce flood forecasts, focussed on a single or a limited number of gauged river cross sections. It illustrates that, despite their lack of accuracy, hydro-meteorological forecasts based on rainfall-runoff models, especially distributed models, contain valuable information for flood event management. The possible consequences of landslides, debris flows and local erosion processes, sometimes associated with flash floods, were not considered at this stage of development of the prototype. They are limited in the Gard region but should be taken into account in future developments of the approach to implement it efficiently in other areas more exposed to these phenomena such as the Alpine area.


2020 ◽  
Author(s):  
Takahiro Sayama ◽  
Masafumi Yamada ◽  
Yoshito Sugawara ◽  
Dai Yamazaki

Abstract The heavy rain event of July 2018 and Typhoon Hagibis in October 2019 caused severe flash flood disasters in numerous parts of western and eastern Japan. Flash floods need to be predicted over a wide range with long forecasting lead time for effective evacuation. The predictability of flash floods caused by the two extreme events are investigated by using a high-resolution (~150 m) nationwide distributed rainfall-runoff model forced by ensemble precipitation forecasts with 39-h lead time. Results of the deterministic simulation at nowcasting mode with radar and gauge composite rainfall could reasonably simulate the storm runoff hydrographs at many dam reservoirs over western Japan for the case of heavy rainfall in 2018 (F18) with the default parameter setting. For the case of Typhoon Hagibis in 2019 (T19), a similar performance was obtained by incorporating unsaturated flow effect in the model applied to Kanto region. The performance of the ensemble forecast was evaluated based on the bias ratios and the relative operating characteristic curves, which suggested the higher predictability in peak runoff for T19. For the F18, the uncertainty arises due to the difficulty in accurately forecasting the storm positions by the frontal zone; as a result, the actual distribution of the peak runoff could not be well forecasted. Overall, this study showed that the predictability of flash floods was different between the two extreme events. The ensemble spreads contain quantitative information of predictive uncertainty, which can be utilized for the decision making of emergency responses against flash floods.


2008 ◽  
Vol 12 (4) ◽  
pp. 1039-1051 ◽  
Author(s):  
J. Younis ◽  
S. Anquetin ◽  
J. Thielen

Abstract. In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of loss of human life and infrastructures. Over the last two decades, flash floods have caused damage costing a billion Euros in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available short-range numerical weather forecasts together with a rainfall-runoff model can be used for early indication of the occurrence of flash floods. One of the challenges in flash flood forecasting is that the watersheds are typically small, and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground measurements. The lack of observations in most flash flood prone basins, therefore, necessitates the development of a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area, with lead times of the order of weather forecasts. This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. This paper describes the main aspects of using numerical weather forecasting for flash flood forecasting, together with a threshold – exceedance. As a case study the severe flash flood event which took place on 8–9 September 2002 has been chosen. Short-range weather forecasts, from the Lokalmodell of the German national weather service, are used as input for the LISFLOOD model, a hybrid between a conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to determine flash floods more than 24 h in advance.


2020 ◽  
Author(s):  
Takahiro Sayama ◽  
Masafumi Yamada ◽  
Yoshito Sugawara ◽  
Dai Yamazaki

Abstract The heavy rain event of July 2018 and Typhoon Hagibis in October 2019 caused severe flash flood disasters in numerous parts of western and eastern Japan. Flash floods need to be predicted over a wide range with long forecasting lead time for effective evacuation. The predictability of flash floods caused by the two extreme events are investigated by using a high-resolution (~ 150 m) nationwide distributed rainfall-runoff model forced by ensemble precipitation forecasts with 39-h lead time. Results of the deterministic simulation at nowcasting mode with radar and gauge composite rainfall could reasonably simulate the storm runoff hydrographs at many dam reservoirs over western Japan for the case of heavy rainfall in 2018 (F18) with the default parameter setting. For the case of Typhoon Hagibis in 2019 (T19), a similar performance was obtained by incorporating unsaturated flow effect in the model applied to Kanto region. The performance of the ensemble forecast was evaluated based on the bias scores and the relative operating characteristic curves, which suggested the higher predictability in peak runoff for T19. For the F18, the uncertainty arises due to the difficulty in accurately forecasting the storm positions by the frontal zone; as a result, the actual distribution of the peak runoff could not be well forecasted. Overall, this study showed that the predictability of flash floods was different between the two extreme events. The ensemble spreads contain quantitative information of predictive uncertainty, which can be utilized for the decision making of emergency responses against flash floods.


2008 ◽  
Vol 5 (1) ◽  
pp. 345-377 ◽  
Author(s):  
J. Younis ◽  
S. Anquetin ◽  
J. Thielen

Abstract. In Mediterranean Europe, flash flooding is one of the most devastating hazards in terms of human life loss and infrastructures. Over the last two decades, flash floods brought losses of a billion Euros of damage in France alone. One of the problems of flash floods is that warning times are very short, leaving typically only a few hours for civil protection services to act. This study investigates if operationally available shortrange numerical weather forecasts together with a rainfall-runoff model can be used as early indication for the occurrence of flash floods. One of the challenges in flash flood forecasting is that the watersheds are typically small and good observational networks of both rainfall and discharge are rare. Therefore, hydrological models are difficult to calibrate and the simulated river discharges cannot always be compared with ground "truth". The lack of observations in most flash flood prone basins, therefore, lead to develop a method where the excess of the simulated discharge above a critical threshold can provide the forecaster with an indication of potential flood hazard in the area with leadtimes of the order of the weather forecasts. This study is focused on the Cévennes-Vivarais region in the Southeast of the Massif Central in France, a region known for devastating flash floods. The critical aspects of using numerical weather forecasting for flash flood forecasting are being described together with a threshold – exceedance. As case study the severe flash flood event which took place on 8–9 September 2002 has been chosen. The short-range weather forecasts, from the Lokalmodell of the German national weather service, are driving the LISFLOOD model, a hybrid between conceptual and physically based rainfall-runoff model. Results of the study indicate that high resolution operational weather forecasting combined with a rainfall-runoff model could be useful to determine flash floods more than 24 hours in advance.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Takahiro Sayama ◽  
Masafumi Yamada ◽  
Yoshito Sugawara ◽  
Dai Yamazaki

AbstractThe heavy rain event of July 2018 and Typhoon Hagibis in October 2019 caused severe flash flood disasters in numerous parts of western and eastern Japan. Flash floods need to be predicted over a wide range with long forecasting lead time for effective evacuation. The predictability of flash floods caused by the two extreme events is investigated by using a high-resolution (~ 150 m) nationwide distributed rainfall-runoff model forced by ensemble precipitation forecasts with 39 h lead time. Results of the deterministic simulation at nowcasting mode with radar and gauge composite rainfall could reasonably simulate the storm runoff hydrographs at many dam reservoirs over western Japan for the case of heavy rainfall in 2018 (F18) with the default parameter setting. For the case of Typhoon Hagibis in 2019 (T19), a similar performance was obtained by incorporating unsaturated flow effect in the model applied to Kanto Region. The performance of the ensemble forecast was evaluated based on the bias ratios and the relative operating characteristic curves, which suggested the higher predictability in peak runoff for T19. For the F18, the uncertainty arises due to the difficulty in accurately forecasting the storm positions by the frontal zone; as a result, the actual distribution of the peak runoff could not be well forecasted. Overall, this study showed that the predictability of flash floods was different between the two extreme events. The ensemble spreads contain quantitative information of predictive uncertainty, which can be utilized for the decision making of emergency responses against flash floods.


2016 ◽  
Vol 64 (4) ◽  
pp. 304-315 ◽  
Author(s):  
Kamila Hlavčová ◽  
Silvia Kohnová ◽  
Marco Borga ◽  
Oliver Horvát ◽  
Pavel Šťastný ◽  
...  

Abstract This work examines the main features of the flash flood regime in Central Europe as revealed by an analysis of flash floods that have occurred in Slovakia. The work is organized into the following two parts: The first part focuses on estimating the rainfall-runoff relationships for 3 major flash flood events, which were among the most severe events since 1998 and caused a loss of lives and a large amount of damage. The selected flash floods occurred on the 20th of July, 1998, in the Malá Svinka and Dubovický Creek basins; the 24th of July, 2001, at Štrbský Creek; and the 19th of June, 2004, at Turniansky Creek. The analysis aims to assess the flash flood peaks and rainfall-runoff properties by combining post-flood surveys and the application of hydrological and hydraulic post-event analyses. Next, a spatially-distributed hydrological model based on the availability of the raster information of the landscape’s topography, soil and vegetation properties, and rainfall data was used to simulate the runoff. The results from the application of the distributed hydrological model were used to analyse the consistency of the surveyed peak discharges with respect to the estimated rainfall properties and drainage basins. In the second part these data were combined with observations from flash flood events which were observed during the last 100 years and are focused on an analysis of the relationship between the flood peaks and the catchment area. The envelope curve was shown to exhibit a more pronounced decrease with the catchment size with respect to other flash flood relationships found in the Mediterranean region. The differences between the two relationships mainly reflect changes in the coverage of the storm sizes and hydrological characteristics between the two regions.


2018 ◽  
Vol 13 (4) ◽  
pp. 780-792
Author(s):  
Mohammad Hossain Mahtab ◽  
Miho Ohara ◽  
Mohamed Rasmy ◽  
◽  

The north-eastern part of Bangladesh is very productive for agriculture and fishing, and the region involves several depressed (haor) areas. Flash floods during the pre-monsoon period bring devastating damage to agriculture in the haor region recurrently. To protect crops from flash floods, the Bangladesh Water Development Board constructed several ring-type submersible embankments. In this research, we have investigated the effectiveness of submersible embankments in controlling flash flooding in the Matian and Shanir haors in the Sunamganj district. A two-dimensional rainfall runoff inundation model was applied considering several scenarios for simulating heavy flash flood events in 2004, 2010, and 2016. Without an embankment, the river overflow would have entered the Matian haor 3 days, 22 days, and 9 days earlier in 2004, 2010, and 2016, respectively, whereas it would have been 7 days and 23 days earlier in 2004 and 2010 for the Shanir haor. The event in 2016 was successfully stopped by the Shanir haor embankment. To avoid river overflow entering into the Matian and Shanir haor completely, the embankment height must be elevated further by 1 m and 0.7 m, respectively. Providing proper drainage facilities for the accumulated rain water inside the hoar is still an important issue for protecting the crops effectively.


2020 ◽  
Author(s):  
Lavado-Casimiro Waldo ◽  
Jimenez Juan Carlos ◽  
Llauca Harold ◽  
Leon Karen ◽  
Oria Clara ◽  
...  

<p>Hydrological hazards related to flash floods (FF) in Peru have caused many economic and human life losses in recent years. In this context, developing complete early warning systems against FF is necessary to cope impacts. For this purpose, hydrological and hydraulic models coupled to numerical weather models (NWM) that provide forecasts are generally used.</p><p>In this sense, the National Meteorological and Hydrological Service of Peru (SENAMHI) has launched the ANDES initiative (Operational Forecasting System for Flash Floods of SENAMHI in English) to support FF events. </p><p>The pilot region is the Vilcanota basin located in the southern Andes into Cusco department. For this purpose, 4 hydrological stations will be monitoring at hourly time resolution (km 105-Intihuatana, Chilca, Pisac and Sallca). More, 3 video cameras in real time will be employed to velocimetry and water levels monitoring. An exhaustive hydrometry analysis (rating curve) will be implemented to follow discharges day by day. The forcing for the hourly hydrological modelling will be the SENAMHI’s automatic stations (rainfall and temperature). For this purpose a merge spatial prediction methodology between satellite real time precipitation and gauge station precipitation will be develop: GPM (Imerg), GSMAP and Hydroestimator satellite products will be evaluated. Preliminary results of hourly hydrological model shown good results using pure satellite precipitation. In the next months an hydraulic model will be implemented in the channels with more flood vulnerability (Lisflood model) that together with an Numerical weather prediction (NWP) the WRF (The Weather Research and Forecasting) meteorological model will be implemented in the Vilcanota basin. The update will be done every six hours and to improve the output results a bias correction methodology  will be use. Finally using these forecasts will be assimilated in the hydrological and hydraulic models.</p><p>This research is part of the multidisciplinary collaboration between British and Peruvian scientists (NERC, CONCYTEC).</p>


Sign in / Sign up

Export Citation Format

Share Document