scholarly journals Surface water as a cause of land degradation from dryland salinity

Author(s):  
J. Nikolaus Callow ◽  
Matthew R. Hipsey ◽  
Ryan I. J. Vogwill

Abstract. Secondary dryland salinity is a global land degradation issue. Because drylands are often less-developed, less-well instrumented and less-well understood, we often adapt and impose an understanding from different hydro-geomorphological settings. Dryland catchments are likely to exhibit some functional qualities of wet and hydrologically-connected landscapes, but also those more typical of flat and arid rangelands, smooth plainlands and deserts, where flow (dis)connectivity is an important feature. The functional hydrological mechanisms used to conceptualise causes of dryland salinity, originate from wet and more hydrologically-connected landscapes. They are then imposed with adjustments for rainfall and streamflow quantity to describe how hillslope-recharge processes interact with groundwater to cause dryland salinity. The pervasive understanding concludes that low flow yield from the end-of-catchment gauging stations indicates that land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface, causing land degradation from dryland salinity. This paper presents data from an intra-catchment surface flow gauging network run for six years and a surface water–groundwater interaction site to assess the adequacy of our conceptual understanding of secondary dryland salinity in environments with low gradients and runoff yield. The aim is to (re)conceptualise pathways of water and salt redistribution in dryland landscapes, to investigate the role that surface water flows and connectivity plays in land degradation from salinity in low-gradient drylands. Based on the long-term end-of-catchment gauge, average annual runoff yield is only 0.14 % of rainfall. The internal gauging network operated from 2007–2012 found pulses of internal water (also mobilising salt) in years when no flow was recorded at the catchment outlet. Data from a surface water–groundwater interaction site shows top-down recharge of surface water early in the water year, that transitions to a bottom-up system of discharge later in the water year. This connection provides a mechanism for the vertical diffusion of salts to the surface waters, followed by evapo-concentration and downstream export when depression storage thresholds are exceeded. Intervention in this landscape by constructing a broad-based channel to address these processes, resulted in a 25 % increase in flow volume and a 20 % reduction in salinity, by allowing the lower catchment to more effectively support bypassing of the storages in the lower landscape that would otherwise retain water and allow salt to accumulate. Results from this study suggests catchment internal redistribution of relatively fresh runoff onto the valley floor is a major contributor to development of secondary dryland salinity. Seasonally inundated areas are subject to significant transmission losses and drive processes of vertical salt mobility. These surface flow and connectivity processes are not acting in isolation to cause secondary salinity, but are also interact with groundwater systems responding to land clearing and processes recognised in the more conventional understanding of hillslope recharge and groundwater discharge. The study landscape appears to have three functional hydrological components: upland, hillslope flow landscapes that generate fresh runoff; valley floor fill landscapes with high transmission losses and poor flow connectivity controlled by the micro-topography that promotes surface–groundwater connection and salt movement; and the downstream flood landscapes, where flows are recorded only when internal storages (fill landscapes) are exceeded. This work highlights the role of surface water processes as a contributor to land degradation by dryland salinity in low-gradient landscapes.

2020 ◽  
Vol 24 (2) ◽  
pp. 717-734
Author(s):  
J. Nikolaus Callow ◽  
Matthew R. Hipsey ◽  
Ryan I. J. Vogwill

Abstract. Secondary dryland salinity is a global land degradation issue. Drylands are often less developed, less well instrumented and less well understood, requiring us to adapt and impose understanding from different hydro-geomorphological settings that are better instrumented and understood. Conceptual models of secondary dryland salinity, from wet and more hydrologically connected landscapes imposed with adjustments for rainfall and streamflow, have led to the pervasive understanding that land clearing alters water balance in favour of increased infiltration and rising groundwater that bring salts to the surface. This paper presents data from an intra-catchment surface flow gauging network run for 6 years and a surface-water–groundwater (SW–GW) interaction site to assess the adequacy of our conceptual understanding of secondary dryland salinity in environments with low gradients and runoff yield. The aim is to (re-)conceptualise pathways of water and salt redistribution in dryland landscapes and to investigate the role that surface water flows and connectivity plays in land degradation from salinity in low-gradient drylands. Based on the long-term end-of-catchment gauge, average annual runoff yield is only 0.14 % of rainfall. The internal gauging network that operated from 2007–2012 found pulses of internal water (also mobilising salt) in years when no flow was recorded at the catchment outlet. Data from a surface-water–groundwater interaction site show top-down recharge of surface water early in the water year that transitions to a bottom-up system of discharge later in the water year. This connection provides a mechanism for the vertical diffusion of salts to the surface waters, followed by evapo-concentration and downstream export when depression storage thresholds are exceeded. Intervention in this landscape by constructing a broad-based channel to address these processes resulted in a 25 % increase in flow volume and a 20 % reduction in salinity by allowing the lower catchment to more effectively support bypassing of the storages in the lower landscape that would otherwise retain water and allow salt to accumulate. Results from this study suggest catchment internal redistribution of relatively fresh runoff onto the valley floor is a major contributor to the development of secondary dryland salinity. Seasonally inundated areas are subject to significant transmission losses and drive processes of vertical salt mobility. These surface flow and connectivity processes are not only acting in isolation to cause secondary salinity but are also interacting with groundwater systems responding to land clearing and processes recognised in the more conventional understanding of hillslope recharge and groundwater discharge. The study landscape appears to have three functional hydrological components: upland, hillslope “flow” landscapes that generate fresh runoff; valley floor “fill” landscapes with high transmission losses and poor flow connectivity controlled by the micro-topography that promotes a surface–groundwater connection and salt movement; and the downstream “flood” landscapes, where flows are recorded only when internal storages (fill landscapes) are exceeded. This work highlights the role of surface water processes as a contributor to land degradation by dryland salinity in low-gradient landscapes.


2013 ◽  
Vol 68 (12) ◽  
pp. 2632-2637 ◽  
Author(s):  
A. M. Aucour ◽  
T. Bariac ◽  
P. Breil ◽  
P. Namour ◽  
L. Schmitt ◽  
...  

Urbanization subjects streams to increased nitrogen loads. Therefore studying nitrogen forms at the interface between urban stream and groundwater is important for water resource management. In this study we report results on water δ18O and nitrogen forms in subsurface waters of a stream (Yzeron, France). The sites studied were located upstream and downstream of combined sewer overflows (CSO) in a rural area and a periurban area, respectively. Water δ18O allowed us to follow the mixing of subsurface water with surface water. Dissolved organic nitrogen and organic carbon of fine sediment increased by 20–30% between rural and periurban subsurface waters in the cold season, under high flow. The highest nitrate levels were observed in rural subsurface waters in the cold season. The lowest nitrate levels were found in periurban subsurface waters in the warm season, under low flow. They corresponded to slow exchange of subsurface waters with channel water. Thus reduced exchange between surface and subsurface waters and organic-matter-rich input seemed to favor nitrate reduction in the downstream, periurban, subsurface waters impacted by CSO.


2018 ◽  
Vol 13 (4) ◽  
pp. 764-770 ◽  
Author(s):  
T. M. Adyel ◽  
M. R. Hipsey ◽  
C. Oldham

Abstract This study assessed the significance of a multi-functional and multi-compartment constructed wetland (CW) implemented to restore a degraded urban waterway in Western Australia. The wetland was initially constructed as a surface flow system, then modified through the incorporation of the additional laterite-based subsurface flow system, with the potential for operation of a recirculation scheme and groundwater top-up during low water flows in summer. The CW performance was assessed by comparing nitrogen (N) and phosphorus (P) attenuation during base flow, high flow and episodic storm flow conditions. The performance varied from approximately 41% total nitrogen (TN) and 66% total phosphorus (TP) loads reduction during storm events, increasing up to 62% TN and 99% TP during low flow and summer recirculation periods. In overall, the CW attenuated about 45% TN and 65% TP loads from being delivered to the downstream sensitive river between 2009 and 2015. The CW design proved to be not only highly effective at reducing nutrient loads, but also improved the ecological services of the urban waterway by providing a diverse area for habitat and recreational activities.


2019 ◽  
Vol 23 (10) ◽  
pp. 4397-4417 ◽  
Author(s):  
Katie Coluccio ◽  
Leanne Kaye Morgan

Abstract. Braided rivers, while uncommon internationally, are significant in terms of their unique ecosystems and as vital freshwater resources at locations where they occur. With an increasing awareness of the connected nature of surface water and groundwater, there have been many studies examining groundwater–surface water exchange in various types of waterbodies, but significantly less research has been conducted in braided rivers. Thus, there is currently limited understanding of how characteristics unique to braided rivers, such as channel shifting, expanding and narrowing margins, and a high degree of heterogeneity affect groundwater–surface water flow paths. This article provides an overview of characteristics specific to braided rivers, including a map showing the regions where braided rivers are mainly found at the global scale: Alaska, Canada, the Japanese and European Alps, the Himalayas, Russia, and New Zealand. To the authors' knowledge, this is the first map of its kind. This is followed by a review of prior studies that have investigated groundwater–surface water interactions in braided rivers and their associated aquifers. The various methods used to characterise these processes are discussed with emphasis on their effectiveness in achieving the studies' objectives and their applicability in braided rivers. We also discuss additional methods that appear promising to apply in braided river settings. The aim is to provide guidance on methodologies most suitable for future work in braided rivers. In many cases, previous studies found a multi-method approach useful to produce more robust results and compare data collected at various scales. Given the challenges of working directly in braided rivers, there is considerable scope for the increased use of remote sensing techniques. There is also opportunity for new approaches to modelling braided rivers using integrated techniques that incorporate the complex river bed terrain and geomorphology of braided rivers explicitly. We also identify a critical need to improve the conceptual understanding of hyporheic exchange in braided rivers, rates of recharge to and from braided rivers, and historical patterns of dry and low-flow periods in these rivers.


2020 ◽  
Vol 26 (3) ◽  
pp. 313-329
Author(s):  
Rebecca J. Frus ◽  
Laura J. Crossey ◽  
Clifford N. Dahm ◽  
Karl E. Karlstrom ◽  
Livia Crowley

ABSTRACT Located on the southeastern part of the Colorado Plateau, the Zuni Mountains are home to the endangered Zuni Bluehead Sucker (ZBS) (Catostomus discobolus yarrowi). A 4-year study was conducted on a low-flow (<80 cm3/s) hillslope spring and intermittent stream, that are home to one of the three remaining ZBS populations. Seasonal measurements of physical and hydrochemical parameters were used to estimate the contribution of groundwater to the stream and to identify geologic and hydrologic controls for the spring discharge. Seasonal concentrations and standard deviations (s) of Mg2+ were used to determine that the spring water (5.6 mg/L; s = 0.4) and surface water up-gradient from the spring input (10.7 mg/L; s = 11.2) is from different sources. Surface water down-gradient from the spring input maintain ZBS populations and is a mixture of spring water and up-gradient surface water. Mass solution mixing was used to determine spring water contributes up to 99 percent of the down-gradient water during drier seasons. Isotopes (δD, δ18O, 3H) indicate that the spring water has been recharged primarily from snowmelt within the last 70 years, while up-gradient surface water is seasonal runoff from rain and snowmelt. Continuous monitoring of dissolved oxygen (DO) mean concentrations (up-gradient = 1.6 mg/L and down-gradient = 5.7 mg/L) indicated that surface water up-gradient from the spring input are anoxic and unable to support ZBS. Surface water down-gradient from the spring input maintain appropriate DO concentrations due to perennially discharging spring waters re-aerating downstream habitats.


2013 ◽  
Vol 10 (8) ◽  
pp. 10277-10312
Author(s):  
P. M. Nyenje ◽  
L. M. G. Meijer ◽  
J. W. Foppen ◽  
R. Kulabako ◽  
S. Uhlenbrook

Abstract. The transport of excessive phosphorus (P) discharged from unsewered informal settlements (slums) due to poor on-site sanitation is largely unknown. Hence, we investigated the processes governing P transport in a 28 km2 slum-dominated catchment in Kampala, Uganda. During high runoff events and a period of base flow, we collected hourly water samples (over 24 h) from a primary channel draining the catchment and from a small size tertiary channel draining one of the contributing slum areas (0.5 km2). Samples were analyzed for orthophosphate (PO4-P), particulate P (PP), total P (TP) and selected hydro-chemical parameters. Channel bed and suspended sediments were collected to determine their sorption potential, geo-available metals and dominant P forms. We found that P inputs in the catchment originated mainly from domestic wastewater as evidenced by high concentrations of Cl (36–144 mg L-1), HCO3 and other cations in the channels. Most P discharged during low flow conditions was particulate implying that much of it was retained in bed sediments. Retained P was mostly bound to Ca and Fe/Al oxides. Hence, we inferred that mineral precipitation and adsorption to Ca-minerals were the dominant P retention processes. Bed sediments were P-saturated and showed a tendency to release P to discharging waters. P released was likely due to Ca-bound P because of the strong correlation between Ca and total P in sediments (r2 = 0.9). High flows exhibited a strong flush of PP and SS implying that part of P retained was frequently flushed out of the catchment by surface erosion and resuspension of bed sediment. Our findings suggest that P accumulated in the channel bed during low flows and then was slowly released into surface water. Hence, it will likely take some time, even with improved wastewater management practices, before P loads to downstream areas can be significantly reduced.


2019 ◽  
Vol 343 (1) ◽  
pp. 012003
Author(s):  
L Utama ◽  
Amrizal ◽  
I Berd ◽  
Zuherna

Abstract A flood may occur for both climatology and human action factors. The climatology factors can be in the form of land degradation, land-use changes, and population increase. The land-use changes can identify when there is a conversion of recharge area into a built area. The conversion may happen because there is potency for a flood area to transform into a place of cities development and settlements. When the population increases, space needed also enlarges. Consequently, the surface flow increase and can cause a flood. Padang - Indonesia, has high rainfall intensity around 3,329 to 4,296 mm/year, which results in a frequent flood. The worst flood occurred on 26 September 2018 and 2 November 2018, which washed away a bridge and caused a 3-meter high puddle. In analyzing those phenomena, this study applied a descriptive qualitative method. The image used in the map was analyzed with Argis X quantum program to get a flood-prone map. The rainfall was calculated by using methods of Thiesen, Gumbel, and Log Pearson III, while the debt calculated using the rational method. The difference debit between these was 42,030m3/second. The results, the amount of land used to discharge was higher than due to the rainfall.


Sign in / Sign up

Export Citation Format

Share Document