scholarly journals Reactive Transport Modeling for Supporting Climate Resilience at Groundwater Contamination Sites

2021 ◽  
Author(s):  
Zexuan Xu ◽  
Rebecca Serata ◽  
Haruko Wainwright ◽  
Miles Denham ◽  
Sergi Molins ◽  
...  

Abstract. Climate resilience is an emerging issue at contaminated sites and hazardous waste sites, since projected climate shifts (e.g., increased/decreased precipitation) and extreme events (e.g., flooding, drought) could affect ongoing remediation or closure strategies. In this study, we develop a reactive transport model (Amanzi) for radionuclides (uranium, tritium, and others) and evaluate how different scenarios under climate change will influence the contaminant plume conditions and groundwater well concentrations. We demonstrate our approach using a two-dimensional reactive transport model for the Savannah River Site F-Area, including mineral reaction and sorption processes. Different recharge scenarios are considered by perturbing the infiltration rate from the base case, as well as considering cap failure and climate projection scenarios. We also evaluate the uranium and nitrate concentration ratios between scenarios and the base case to isolate the sorption effects with changing recharge rates. The modeling results indicate that the competing effects of dilution and remobilization significantly influence pH, thus changing the sorption of uranium. At the maximum concentration on the breakthrough curve, higher aqueous uranium concentration implies that sorption is reduced with lower pH due to remobilization. To better evaluate the climate change impacts in the future, we develop the workflow to include the downscaled CMIP5 (Coupled Model Intercomparison Project) climate projection data in the reactive transport model, and evaluate how residual contamination evolves through 2100 under four climate Representative Concentration Pathway (RCP) scenarios. The integration of climate modeling data and hydro-geochemistry models enables us to quantify the climate change impacts, assess which impacts need to be planned for, and therefore assist climate resiliency efforts and help guide site management.

2016 ◽  
Vol 50 (13) ◽  
pp. 7010-7018 ◽  
Author(s):  
Yiwei Cheng ◽  
Christopher G. Hubbard ◽  
Li Li ◽  
Nicholas Bouskill ◽  
Sergi Molins ◽  
...  

2009 ◽  
Vol 2 (2) ◽  
pp. 274-286 ◽  
Author(s):  
Timothy D. Scheibe ◽  
Radhakrishnan Mahadevan ◽  
Yilin Fang ◽  
Srinath Garg ◽  
Philip E. Long ◽  
...  

2021 ◽  
Author(s):  
Denis Sergeevich Nikolaev ◽  
Nazika Moeininia ◽  
Holger Ott ◽  
Hagen Bueltemeier

Abstract Underground bio-methanation is a promising technology for large-scale renewable energy storage. Additionally, it enables the recycling of CO2 via the generation of "renewable methane" in porous reservoirs using in-situ microbes as bio-catalysts. Potential candidate reservoirs are depleted gas fields or even abandoned gas storages, providing enormous storage capacity to balance seasonal energy supply and demand fluctuations. This paper discusses the underlying bio-methanation process as part of the ongoing research project "Bio-UGS – Biological conversion of carbon dioxide and hydrogen to methane," funded by the German Federal Ministry of Education and Research (BMBF). First, the hydrodynamic processes are assessed, and a review of the related microbial processes is provided. Then, based on exemplary field-scale simulations, the bio-reactive transport process and its consequences for operation are evaluated. The hydrogen conversion process was investigated by numerical simulations on field scale. For this, a two-phase multi-component bio-reactive transport model was implemented by (Hagemann 2018) in the open-source DuMux (Flemisch et al. 2011) simulation toolkit for porous media flow. The underlying processes include the transport of reactants and products, consumption of specific components, and the related growth and decay of the microbial population, resulting in a bio-reactive transport model. The microbial kinetic parameters of methanogenic reactions are taken from the available literature. The simulation study covers different scenarios on conceptional field-scale models, studying the impact of well placement, injection rates, and gas compositions. Due to a significant sensitivity of the simulation results to the bio-conversion kinetics, the field-specific conversion rates must be obtained. Thus, the Bio-UGS project is accompanied by laboratory experiments out of the frame of this paper. Other parameters are rather a matter of design; in the present case of depleted gas fields, those parameters are coupled and can be chosen to convert fully hydrogen and carbon dioxide to methane. Especially the well spacing can be considered the main design parameter in the likely case of a given injection rate and gas composition. This study extends the application of the previously developed code from a homogeneous-2D to the heterogeneous-3D case. The simulations mimic the co-injection of carbon dioxide and hydrogen from a 40 MW electrolysis.


Sign in / Sign up

Export Citation Format

Share Document