Supplementary material to "Dynamics of hydrological and geomorphological processes in evaporite karst at the eastern Dead Sea – a multidisciplinary study"

Author(s):  
Djamil Al-Halbouni ◽  
Robert A. Watson ◽  
Eoghan P. Holohan ◽  
Rena Meyer ◽  
Ulrich Polom ◽  
...  
2021 ◽  
Vol 25 (6) ◽  
pp. 3351-3395
Author(s):  
Djamil Al-Halbouni ◽  
Robert A. Watson ◽  
Eoghan P. Holohan ◽  
Rena Meyer ◽  
Ulrich Polom ◽  
...  

Abstract. Karst groundwater systems are characterized by the presence of multiple porosity types. Of these, subsurface conduits that facilitate concentrated, heterogeneous flow are challenging to resolve geologically and geophysically. This is especially the case in evaporite karst systems, such as those present on the shores of the Dead Sea, where rapid geomorphological changes are linked to a fall in base level by over 35 m since 1967. Here we combine field observations, remote-sensing analysis, and multiple geophysical surveying methods (shear wave reflection seismics, electrical resistivity tomography, ERT, self-potential, SP, and ground-penetrating radar, GPR) to investigate the nature of subsurface groundwater flow and its interaction with hypersaline Dead Sea water on the rapidly retreating eastern shoreline, near Ghor Al-Haditha in Jordan. Remote-sensing data highlight links between the evolution of surface stream channels fed by groundwater springs and the development of surface subsidence patterns over a 25-year period. ERT and SP data from the head of one groundwater-fed channel adjacent to the former lakeshore show anomalies that point to concentrated, multidirectional water flow in conduits located in the shallow subsurface (< 25 m depth). ERT surveys further inland show anomalies that are coincident with the axis of a major depression and that we interpret as representing subsurface water flow. Low-frequency GPR surveys reveal the limit between unsaturated and saturated zones (< 30 m depth) surrounding the main depression area. Shear wave seismic reflection data nearly 1 km further inland reveal buried paleochannels within alluvial fan deposits, which we interpret as pathways for groundwater flow from the main wadi in the area towards the springs feeding the surface streams. Finally, simulations of density-driven flow of hypersaline and undersaturated groundwaters in response to base-level fall perform realistically if they include the generation of karst conduits near the shoreline. The combined approaches lead to a refined conceptual model of the hydrological and geomorphological processes developed at this part of the Dead Sea, whereby matrix flow through the superficial aquifer inland transitions to conduit flow nearer the shore where evaporite deposits are encountered. These conduits play a key role in the development of springs, stream channels and subsidence across the study area.


2021 ◽  
Author(s):  
Djamil Al-Halbouni ◽  
Robert A. Watson ◽  
Eoghan P. Holohan ◽  
Rena Meyer ◽  
Ulrich Polom ◽  
...  

Abstract. Karst groundwater systems are characterised by the presence of multiple porosity types. Of these, subsurface conduits that facilitate concentrated, heterogeneous flow are challenging to resolve geologically and geophysically. This is especially the case in evaporite karst systems, such as those present on the shores of the Dead Sea, where rapid geomorphological changes are linked to a fall in base level by over 35 m since 1967. Here we combine field observations, remote sensing analysis, and multiple geophysical surveying methods (shear wave reflection seismics, electrical resistivity tomography [ERT], self-potential [SP] and ground penetrating radar [GPR]) to investigate the nature of subsurface groundwater flow and its interaction with hypersaline Dead Sea water on the rapidly retreating eastern shoreline, near Ghor Al-Haditha in Jordan. Remote-sensing data highlight links between the evolution of surface stream channels fed by groundwater springs and the development of surface subsidence patterns over a 25-year period. ERT and SP data from the head of one groundwater-fed channel adjacent the former lakeshore show anomalies that point to concentrated, multidirectional water flow in conduits located in the shallow subsurface (


2018 ◽  
Author(s):  
Jutta Vüllers ◽  
Georg J. Mayr ◽  
Ulrich Corsmeier ◽  
Christoph Kottmeier

2020 ◽  
Author(s):  
Robert Watson ◽  
Eoghan Holohan ◽  
Djamil Al-Halbouni ◽  
Hussam Alrshdan ◽  
Damien Closson ◽  
...  

&lt;p&gt;Enclosed topographic depressions are characteristic of karst landscapes on Earth. The scale and morphological characteristics of such depressions are variable, but the most common depression type is a sinkhole (doline). Certain karst depressions that are much larger than sinkholes and that display gentler slopes and more complex three-dimensional shapes are known as uvalas. A single uvala typically contains numerous sinkholes within it. The developmental relationship between sinkholes and uvalas has been subject of debate, however, mainly because long developmental timescales impede direct observation in classical limestone karst, where such features are most commonly reported.&lt;/p&gt;&lt;p&gt;Here, we describe the development of five uvalas and numerous associated sinkholes in an evaporite karst setting on the eastern shore of the hypersaline Dead Sea. This karst landscape evolved rapidly over a 25-year period from 1992 to 2017 in response to the anthropogenically-driven decline in the Dead Sea level. Our remote sensing data and field observations show that both the sinkholes and the uvala-like depressions formed through subsidence in a very close spatio-temporal relationship. While many sinkholes developed initially in clusters, the uvalas developed around such clusters as larger-scale and gentler depressions that are structurally distinct both in space and time.&lt;/p&gt;&lt;p&gt;In agreement with inferences for examples in limestone karst settings, the uvalas in this evaporite karst setting do not form by a simple coalescence of sinkholes. Instead, these evaporite-karst uvalas form through subsidence (sagging), interpreted here as in response to distributed subsurface dissolution and physical erosion within a mechanically unstable subsurface volume (e.g. a groundwater conduit network). Sinkholes, on the other hand, are interpreted as discrete subsidence responses within that volume to smaller-scale zones of highly localised material removal (e.g. individual groundwater conduits). Our observations and interpretations are consistent with numerical modelling of subsidence produced by the development of multiple void spaces at progressively deepening levels. Morphometrically, our results also agree well in several respects with a recent re-evaluation of uvalas in some classical limestone karst areas. Consequently, this study helps to clarify the nature, occurrence and genesis of uvalas in karst systems generally.&lt;/p&gt;


Solid Earth ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 1451-1468 ◽  
Author(s):  
Robert A. Watson ◽  
Eoghan P. Holohan ◽  
Djamil Al-Halbouni ◽  
Leila Saberi ◽  
Ali Sawarieh ◽  
...  

Abstract. Enclosed topographic depressions are characteristic of karst landscapes on Earth. The developmental relationship between depression types, such as sinkholes (dolines) and uvalas, has been the subject of debate, mainly because the long developmental timescales in classical limestone karst settings impede direct observation. Here we characterize the morphometric properties and spatio-temporal development of ∼1150 sinkholes and five uvalas formed from ∼1980 to 2017 in an evaporite karst setting along the eastern coast of the hypersaline Dead Sea (at Ghor Al-Haditha, Jordan). The development of sinkhole populations and individual uvalas is intertwined in terms of onset, evolution and cessation. The sinkholes commonly develop in clusters, within which they may coalesce to form compound or nested sinkholes. In general, however, the uvalas are not defined by coalescence of sinkholes. Although each uvala usually encloses several clusters of sinkholes, it develops as a larger-scale, gentler and structurally distinct depression. The location of new sinkholes and uvalas shows a marked shoreline-parallel migration with time, followed by a marked shoreline-perpendicular (i.e. seaward) growth with time. These observations are consistent with theoretical predictions of karstification controlled by a laterally migrating interface between saturated and undersaturated groundwater, as induced by the 35 m fall in the Dead Sea water level since 1967. More generally, our observations indicate that uvalas and the sinkhole populations within them, although morphometrically distinct, can develop near-synchronously by subsidence in response to subsurface erosion.


2010 ◽  
Vol 73 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Suzanne A.G. Leroy ◽  
Shmuel Marco ◽  
Revital Bookman ◽  
Charlotte S. Miller

The Dead Sea region holds the archives of a complex relationship between an ever-changing nature and ancient civilisations. Regional pollen diagrams show a Roman"Byzantine period standing out in the recent millennia by its wetter climate that allowed intensive arboriculture. During that period, the Dead Sea formed laminites that display mostly a seasonal character. A multidisciplinary study focused on two earthquakes, 31 BC and AD 363, recorded as seismites in the Ze"elim gully A unit III which has been well dated by radiocarbon in a previous study. The sampling of the sediment was done at an annual resolution starting from a few years before and finishing a decade after each earthquake. A clear drop in agricultural indicators (especially Olea and cereals) is shown. These pollen indicators mostly reflect human activities in the Judean Hills and coastal oases. Agriculture was disturbed in large part of the rift valley where earthquake damage affected irrigation and access to the fields. It took 4 to 5 yr to resume agriculture to previous conditions. Earthquakes must be seen as contributors to factors damaging societies. If combined with other factors such as climatic aridification, disease epidemics and political upheaval, they may lead to civilisation collapse.


2017 ◽  
Vol 46 (2) ◽  
pp. 277-302 ◽  
Author(s):  
Mikhail Ezersky ◽  
◽  
Anatoly Legchenko ◽  
Lev Eppelbaum ◽  
Abdallah Al-Zoubi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document