scholarly journals Transboundary water sharing policies conditioned on hydrologic variability to inform reservoir operations

2021 ◽  
Author(s):  
Guang Yang ◽  
Paul Block

Abstract. Water resources infrastructure is critical for energy and food security, however, the development of large-scale infrastructure, such as hydropower dams, may significantly alter downstream flows, potentially leading to water resources management conflicts and disputes, especially in transboundary river basins. Mutually agreed upon water sharing policies for the operation of existing or new reservoirs is one of the most effective strategies to mitigate conflict, yet this is a complex task involving the estimation of available water, identification of users and demands, procedures for water sharing, etc. We propose a water-sharing policy framework that incorporates reservoir operating rules optimization based on conflicting uses and natural hydrologic variability, specifically tailored to drought conditions. We first establish the trade-off between downstream and upstream water availability utilizing multi-objective optimization of reservoir operating rules. Next, we simulate reservoir operation with the candidate (optimal) rules, evaluate their performance, and select the most suitable rules for balancing water uses. Subsequently, we build a relationship between the reservoir operations simulated from the selected rules and drought-specific conditions to derive water-sharing policies. Finally, we re-optimize the reservoir operating rules to evaluate the effectiveness of the drought-specific water sharing policies. We apply the framework to reservoir operation of the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile River. We find that the derived water sharing policy can balance GERD power generation and downstream releases, especially in dry conditions, effectively sharing the hydrologic risk in inflow variability among riparian countries. The proposed framework offers a robust approach to inform water sharing policies for sustainable management of transboundary water resources.

2021 ◽  
Vol 25 (6) ◽  
pp. 3617-3634
Author(s):  
Guang Yang ◽  
Paul Block

Abstract. Water resources infrastructure is critical for energy and food security; however, the development of large-scale infrastructure, such as hydropower dams, may significantly alter downstream flows, potentially leading to water resources management conflicts and disputes. Mutually agreed upon water sharing policies for the operation of existing or new reservoirs is one of the most effective strategies for mitigating conflict, yet this is a complex task involving the estimation of available water, identification of users and demands, procedures for water sharing, etc. A water sharing policy framework that incorporates reservoir operating rules optimization based on conflicting uses and natural hydrologic variability, specifically tailored to drought conditions, is proposed. First, the trade-off between downstream and upstream water availability utilizing multi-objective optimization of reservoir operating rules is established. Next, reservoir operation with the candidate (optimal) rules is simulated, followed by their performance evaluations, and the rule selections for balancing water uses. Subsequently, a relationship between the reservoir operations simulated from the selected rules and drought-specific conditions is built to derive water sharing policies. Finally, the reservoir operating rules are re-optimized to evaluate the effectiveness of the drought-specific water sharing policies. With a case study of the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile river, it is demonstrated that the derived water sharing policy can balance GERD power generation and downstream releases, especially in dry conditions, effectively sharing the hydrologic risk in inflow variability among riparian countries. The proposed framework offers a robust approach to inform water sharing policies for sustainable management of water resources.


2020 ◽  
Author(s):  
Guang Yang ◽  
Paul Block

<p>Incorporating streamflow forecasts into reservoir management can often lead to improved operational efficiency. Large-scale climate variables and indices – in addition to local hydrologic variables – may also provide valuable information for reservoir operations given their limitate relationship with streamflow. A new tree-based machine learning approach for updating reservoir operating rules conditioned on large-scale climate indices is proposed by selecting the most suitable reservoir decision-making pattern for each year. Multiple types of reservoir operating rules can be extracted from the historical streamflow data with different hydrological (e.g., wet and dry) conditions. Their performance can be recorded and correlated with climate indices by using a decision-tree classification model, and then the rules with the best performance conditioned on a given climate index value can be selected for reservoir operations. A case study of reservoir operations for the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile River demonstrates that the proposed tree-based reservoir operation framework can accurately select suitable decision-making rules both for normal and forecast-informed reservoir operations. Notably, incorporating May Nino 4.0 values into GERD reservoir operations can increase power generation during flood seasons, especially in extreme years.</p>


2015 ◽  
Vol 29 (7) ◽  
pp. 2303-2321 ◽  
Author(s):  
Hojjat Mianabadi ◽  
Erik Mostert ◽  
Saket Pande ◽  
Nick van de Giesen

2013 ◽  
Vol 17 (9) ◽  
pp. 3605-3622 ◽  
Author(s):  
N. Voisin ◽  
H. Li ◽  
D. Ward ◽  
M. Huang ◽  
M. Wigmosta ◽  
...  

Abstract. Human influence on the hydrologic cycle includes regulation and storage, consumptive use and overall redistribution of water resources in space and time. Representing these processes is essential for applications of earth system models in hydrologic and climate predictions, as well as impact studies at regional to global scales. Emerging large-scale research reservoir models use generic operating rules that are flexible for coupling with earth system models. Those generic operating rules have been successful in reproducing the overall regulated flow at large basin scales. This study investigates the uncertainties of the reservoir models from different implementations of the generic operating rules using the complex multi-objective Columbia River Regulation System in northwestern United States as an example to understand their effects on not only regulated flow but also reservoir storage and fraction of the demand that is met. Numerical experiments are designed to test new generic operating rules that combine storage and releases targets for multi-purpose reservoirs and to compare the use of reservoir usage priorities and predictors (withdrawals vs. consumptive demands, as well as natural vs. regulated mean flow) for configuring operating rules. Overall the best performing implementation is with combined priorities rules (flood control storage targets and irrigation release targets) set up with mean annual natural flow and mean monthly withdrawals. The options of not accounting for groundwater withdrawals, or on the contrary, of assuming that all remaining demand is met through groundwater extractions, are discussed.


Sign in / Sign up

Export Citation Format

Share Document