scholarly journals Mass balance and hydrological modeling of the Hardangerjøkulen ice cap in south-central Norway

2021 ◽  
Vol 25 (8) ◽  
pp. 4275-4297
Author(s):  
Trude Eidhammer ◽  
Adam Booth ◽  
Sven Decker ◽  
Lu Li ◽  
Michael Barlage ◽  
...  

Abstract. A detailed, physically based, one dimensional column snowpack model (Crocus) has been incorporated into the hydrological model, Weather Research and Forecasting (WRF)-Hydro, to allow for direct surface mass balance simulation of glaciers and subsequent modeling of meltwater discharge from glaciers. The new system (WRF-Hydro/Glacier) is only activated over a priori designated glacier areas. This glacier area is initialized with observed glacier thickness and assumed to be pure ice (with corresponding ice density). This allows for melting of the glacier to continue after all accumulated snow has melted. Furthermore, the simulation of surface albedo over the glacier is more realistic, as surface albedo is represented by snow, where there is accumulated snow, and glacier ice, when all accumulated snow is melted. To evaluate the WRF-Hydro/Glacier system over a glacier in southern Norway, WRF atmospheric model simulations were downscaled to 1 km grid spacing. This provided meteorological forcing data to the WRF-Hydro/Glacier system at 100 m grid spacing for surface and streamflow simulation. Evaluation of the WRF downscaling showed a good comparison with in situ meteorological observations for most of the simulation period. The WRF-Hydro/Glacier system reproduced the glacier surface winter/summer and net mass balance, snow depth, surface albedo and glacier runoff well compared to observations. The improved estimation of albedo has an appreciable impact on the discharge from the glacier during frequent precipitation periods. We have shown that the integrated snowpack system allows for improved glacier surface mass balance studies and hydrological studies.

2020 ◽  
Author(s):  
Trude Eidhammer ◽  
Adam Booth ◽  
Sven Decker ◽  
Lu Li ◽  
Michael Barlage ◽  
...  

Abstract. A detailed, physically based one dimensional, column snowpack model (Crocus) has been incorporated into the hydrological model WRF-Hydro. This allows for direct surface mass balance simulation of glaciers and subsequent modeling of meltwater discharge from glaciers. To evaluate the new system (WRF-Hydro/Glacier), WRF model simulations were downscaled to 1 km grid spacing to provide meteorological forcing data to the WRF-Hydro/Glacier system at 100 m grid spacing. Evaluation of the WRF downscaling showed that it compared well with in situ meteorological observations for most of the simulation period. The WRF-Hydro/Glacier system reproduced the glacier surface winter/summer and net mass balance, snow depth, surface albedo and glacier runoff well compared to observations. The WRF-Hydro/Glacier system is only activated over a priori designated glacier areas. This glacier area is initialized with observed glacier thickness and assumed to be pure ice (with corresponding ice density). This allows for melt of the glacier to continue after all accumulated snow has melted. Furthermore, the simulation of surface albedo over the glacier is more realistic as surface albedo is represented by snow where there is accumulated snow, and glacier ice when all accumulated snow is melted. The improved estimation of albedo has an appreciable impact on the discharge from the glacier during late summer. We have shown that the integrated snow pack system allows for improved glacier surface mass balance studies as well as hydrological studies.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1949 ◽  
Author(s):  
Yong Zhang ◽  
Xin Wang ◽  
Zongli Jiang ◽  
Junfeng Wei ◽  
Hiroyuki Enomoto ◽  
...  

Arctic glaciers comprise a small fraction of the world’s land ice area, but their ongoing mass loss currently represents a large cryospheric contribution to the sea level rise. In the Suntar-Khayata Mountains (SKMs) of northeastern Siberia, in situ measurements of glacier surface mass balance (SMB) are relatively sparse, limiting our understanding of the spatiotemporal patterns of regional mass loss. Here, we present SMB time series for all glaciers in the SKMs, estimated through a glacier SMB model. Our results yielded an average SMB of −0.22 m water equivalents (w.e.) year−1 for the whole region during 1951–2011. We found that 77.4% of these glaciers had a negative mass balance and detected slightly negative mass balance prior to 1991 and significantly rapid mass loss since 1991. The analysis suggests that the rapidly accelerating mass loss was dominated by increased surface melting, while the importance of refreezing in the SMB progressively decreased over time. Projections under two future climate scenarios confirmed the sustained rapid shrinkage of these glaciers. In response to temperature rise, the total present glacier area is likely to decrease by around 50% during the period 2071–2100 under representative concentration pathway 8.5 (RCP8.5).


2018 ◽  
Vol 12 (1) ◽  
pp. 271-286 ◽  
Author(s):  
Lucas Davaze ◽  
Antoine Rabatel ◽  
Yves Arnaud ◽  
Pascal Sirguey ◽  
Delphine Six ◽  
...  

Abstract. Less than 0.25 % of the 250 000 glaciers inventoried in the Randolph Glacier Inventory (RGI V.5) are currently monitored with in situ measurements of surface mass balance. Increasing this archive is very challenging, especially using time-consuming methods based on in situ measurements, and complementary methods are required to quantify the surface mass balance of unmonitored glaciers. The current study relies on the so-called albedo method, based on the analysis of albedo maps retrieved from optical satellite imagery acquired since 2000 by the MODIS sensor, on board the TERRA satellite. Recent studies revealed substantial relationships between summer minimum glacier-wide surface albedo and annual surface mass balance, because this minimum surface albedo is directly related to the accumulation–area ratio and the equilibrium-line altitude. On the basis of 30 glaciers located in the French Alps where annual surface mass balance data are available, our study conducted on the period 2000–2015 confirms the robustness and reliability of the relationship between the summer minimum surface albedo and the annual surface mass balance. For the ablation season, the integrated summer surface albedo is significantly correlated with the summer surface mass balance of the six glaciers seasonally monitored. These results are promising to monitor both annual and summer glacier-wide surface mass balances of individual glaciers at a regional scale using optical satellite images. A sensitivity study on the computed cloud masks revealed a high confidence in the retrieved albedo maps, restricting the number of omission errors. Albedo retrieval artifacts have been detected for topographically incised glaciers, highlighting limitations in the shadow correction algorithm, although inter-annual comparisons are not affected by systematic errors.


2016 ◽  
Vol 37 (7) ◽  
pp. 3154-3174 ◽  
Author(s):  
Sebastian H. Mernild ◽  
Glen E. Liston ◽  
Christopher Hiemstra ◽  
Ryan Wilson

2011 ◽  
Vol 32 (4-5) ◽  
pp. 459-474 ◽  
Author(s):  
Lennart Bengtsson ◽  
Symeon Koumoutsaris ◽  
Kevin Hodges

2020 ◽  
Author(s):  
Evan Miles ◽  
Michael McCarthy ◽  
Amaury Dehecq ◽  
Marin Kneib ◽  
Stefan Fugger ◽  
...  

<p>Glaciers in High Mountain Asia have experienced intense scientific scrutiny in the past decade due to their hydrological and societal importance. The explosion of freely-available satellite observations has greatly advanced our understanding of their thinning, motion, and overall mass losses, and it has become clear that they exhibit both local and regional variations due to debris cover, surging and climatic regime. However, our understanding of glacier accumulation and ablation rates is limited to a few individual sites, and altitudinal surface mass balance is essentially unknown across the vast region.</p><p>Here we combine recent assessments of ice thickness and surface velocity to correct observed glacier thinning rates for mass redistribution in a flowband framework to derive the first estimates of altitudinal glacier surface mass balance across the region. We first evaluate our results at the glacier scale with all available glaciological field measurements (27 glaciers), then analyze 4665 glaciers (we exclude surging and other anomalous glaciers) comprising 43% of area and 36% of mass for glaciers larger than 2 km<sup>2</sup> in the region. The surface mass balance results allow us to determine the equilibrium line altitude for each glacier for the period 2000-2016.  We then aggregate our altitudinal and hypsometric surface mass balance results to produce idealised profiles for distinct subregions, enabling us to consider the subregional heterogeneity of mass balance and the importance of debris-covered ice for the region’s overall ablation.</p><p>We find clear patterns of ELA variability across the region.  9% of glaciers accumulate mass over less than 10% of their area on average for the study period. These doomed  glaciers are concentrated in Nyainqentanglha, which also has the most negative mass balance of the subregions, whereas accumulation area ratios of 0.7-0.9 are common for glaciers in the neutral-balance Karakoram and Kunlun Shan. We find that surface debris extent is negatively correlated with ELA, explaining up to 1000 m of variability across the region and reflecting the importance of avalanching as a mass input for debris-covered glaciers at lower elevations. However, in contrast with studies of thinning rates alone, we find a clear melt reduction for low-elevation debris-covered glacier areas, consistent across regions, largely resolving the ‘debris cover anomaly’.  </p><p>Our results provide a comprehensive baseline for the health of the High Asian ice reservoirs in the early 21<sup>st</sup> Century. The estimates of altitudinal surface mass balance and ELAs will additionally enable novel strategies for the calibration of glacier and hydrological models. Finally, our results emphasize the potential of combined remote-sensing observations to understand the environmental factors and physical processes responsible for High Asia’s heterogeneous patterns of recent glacier evolution.</p>


2018 ◽  
Vol 12 (4) ◽  
pp. 1367-1386 ◽  
Author(s):  
Marion Réveillet ◽  
Delphine Six ◽  
Christian Vincent ◽  
Antoine Rabatel ◽  
Marie Dumont ◽  
...  

Abstract. This study focuses on simulations of the seasonal and annual surface mass balance (SMB) of Saint-Sorlin Glacier (French Alps) for the period 1996–2015 using the detailed SURFEX/ISBA-Crocus snowpack model. The model is forced by SAFRAN meteorological reanalysis data, adjusted with automatic weather station (AWS) measurements to ensure that simulations of all the energy balance components, in particular turbulent fluxes, are accurately represented with respect to the measured energy balance. Results indicate good model performance for the simulation of summer SMB when using meteorological forcing adjusted with in situ measurements. Model performance however strongly decreases without in situ meteorological measurements. The sensitivity of the model to meteorological forcing indicates a strong sensitivity to wind speed, higher than the sensitivity to ice albedo. Compared to an empirical approach, the model exhibited better performance for simulations of snow and firn melting in the accumulation area and similar performance in the ablation area when forced with meteorological data adjusted with nearby AWS measurements. When such measurements were not available close to the glacier, the empirical model performed better. Our results suggest that simulations of the evolution of future mass balance using an energy balance model require very accurate meteorological data. Given the uncertainties in the temporal evolution of the relevant meteorological variables and glacier surface properties in the future, empirical approaches based on temperature and precipitation could be more appropriate for simulations of glaciers in the future.


Sign in / Sign up

Export Citation Format

Share Document