scholarly journals Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains of Morocco

2004 ◽  
Vol 8 (6) ◽  
pp. 1076-1089 ◽  
Author(s):  
O. Schulz ◽  
C. de Jong

Abstract. Snow in the High Atlas Mountains is a major source for freshwater renewal and for water availability in the semi-arid lowlands of south-eastern Morocco. Snowfall- and snow-ablation monitoring and modelling is important for estimating potential water delivery from the mountain water towers to the forelands. This study is part of GLOWA-IMPETUS, an integrated management project dealing with scarce water resources in West Africa. The Ameskar study area is located to the south of the High Atlas Mountains, in their rain shadow. As a part of the M’Goun river basin within the upper Drâa valley, the study area is characterised by high radiation inputs, low atmospheric humidity and long periods with sub-zero temperatures. Its altitude ranges between 2000 m and 4000 m, with dominant north- and south-facing slopes. Snowfall occurs mainly from November to April but even summit regions can become repeatedly devoid of snow cover. Snow cover maps for the M’Goun basin (1240 km2) are derived from calculations of NDSI (Normalized Difference Snow Index) from MODIS satellite images and snow depth is monitored at four automatic weather stations between 2000–4000 m. Snowfall events are infrequent at lower altitudes. The presence of snow penitentes at altitudes above 3000 m indicates that snow sublimation is an important component of snow ablation. Snow ablation was modelled with the UEB Utah Energy Balance Model (Tarboton and Luce, 1996). This single layer, physically-based, point energy and mass balance model is driven by meteorological variables recorded at the automatic weather stations at Tounza (2960 m) and Tichki (3260 m). Data from snow pillows at Tounza and Tichki are used to validate the model’s physical performance in terms of energy and water balances for a sequence of two snowfall events in the winter of 2003/4. First UEB modelling results show good overall performance and timing of snowmelt and sublimation compared to field investigations. Up to 44% of snow ablation is attributed to snow sublimation in typical winters with subzero temperatures and low atmospheric humidity at an altitude of 3000 m. At altitudes below 3000 m snowmelt generally dominates over sublimation. Unfortunately, the highest altitude zones suffer long periods with direct water loss into the atmosphere by sublimation in the course of which they cannot contribute to direct runoff or groundwater formation in the southern High Atlas Mountains. Keywords: sublimation, snow ablation modelling, energy balance model, High Atlas Mountains

2014 ◽  
Vol 15 (1) ◽  
pp. 143-158 ◽  
Author(s):  
Cezar Kongoli ◽  
William P. Kustas ◽  
Martha C. Anderson ◽  
John M. Norman ◽  
Joseph G. Alfieri ◽  
...  

Abstract The utility of a snow–vegetation energy balance model for estimating surface energy fluxes is evaluated with field measurements at two sites in a rangeland ecosystem in southwestern Idaho during the winter of 2007: one site dominated by aspen vegetation and the other by sagebrush. Model parameterizations are adopted from the two-source energy balance (TSEB) modeling scheme, which estimates fluxes from the vegetation and surface substrate separately using remotely sensed measurements of land surface temperature. Modifications include development of routines to account for surface snowmelt energy flux and snow masking of vegetation. Comparisons between modeled and measured surface energy fluxes of net radiation and turbulent heat showed reasonable agreement when considering measurement uncertainties in snow environments and the simplified algorithm used for the snow surface heat flux, particularly on a daily basis. There was generally better performance over the aspen field site, likely due to more reliable input data of snow depth/snow cover. The model was robust in capturing the evolution of surface energy fluxes during melt periods. The model behavior was also consistent with previous studies that indicate the occurrence of upward sensible heat fluxes during daytime owing to solar heating of vegetation limbs and branches, which often exceeds the downward sensible heat flux driving the snowmelt. However, model simulations over aspen trees showed that the upward sensible heat flux could be reversed for a lower canopy fraction owing to the dominance of downward sensible heat flux over snow. This indicates that reliable vegetation or snow cover fraction inputs to the model are needed for estimating fluxes over snow-covered landscapes.


2010 ◽  
Vol 3 (2) ◽  
pp. 627-649 ◽  
Author(s):  
U. Strasser ◽  
T. Marke

Abstract. This paper describes the spreadsheet-based point energy balance model ESCIMO.spread which simulates the energy and mass balance as well as melt rates of a snow surface. The model makes use of hourly recordings of temperature, precipitation, wind speed, relative humidity, global and longwave radiation. The effect of potential climate change on the seasonal evolution of the snow cover can be estimated by modifying the time series of observed temperature and precipitation by means of adjustable parameters. Model output is graphically visualized in hourly and daily diagrams. The results compare well with weekly measured snow water equivalent (SWE). The model is easily portable and adjustable, and runs particularly fast: hourly calculation of a one winter season is instantaneous on a standard computer. ESICMO.spread can be obtained from the authors on request (contact: [email protected]).


2010 ◽  
Vol 3 (2) ◽  
pp. 643-652 ◽  
Author(s):  
U. Strasser ◽  
T. Marke

Abstract. This paper describes the spreadsheet-based point energy balance model ESCIMO.spread which simulates the energy and mass balance as well as melt rates at the snow surface. The model makes use of hourly recordings of temperature, precipitation, wind speed, relative humidity, and incoming global and longwave radiation. The effect of potential climate change on the seasonal evolution of the snow cover can be estimated by modifying the time series of observed temperature and precipitation by means of adjustable parameters. Model output is graphically visualized in hourly and daily diagrams. The results compare well with weekly measured snow water equivalent (SWE). The model is easily portable and adjustable, and runs particularly fast: an hourly calculation of a one winter season is instantaneous on a standard computer. ESCIMO.spread can be obtained from the authors on request.


1991 ◽  
Vol 21 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Marcel Prévost ◽  
Richard Barry ◽  
Jean Stein ◽  
André P. Plamondon

This study compares snowmelt models and determines the relative importance of the meteorological parameters affecting snowmelt during the 1985, 1986, and 1987 melt seasons in a dense balsam fir stand in Laurentide forest, 80 km north of the city of Québec. Net all-wave radiation, air temperature, wind speed, relative humidity, and rainfall were correlated with meltwater that reached the base of the snow cover as measured with a 20-m2 snow lysimeter. The estimation of energy balance components of the snow cover during the snowmelt period showed that while solar radiation absorption dominated, turbulent transfers as well as heat exchanges with ground and rain were negligible. The temperature index model SNOW-17 yielded predictions of snow cover outflow as accurately as the energy balance model, both explaining 64% of hourly outflow variation and more than 85% of daily outflow variation. Single meteorological parameters usually explained less than 25% of the hourly melt because of the meltwater transmission lag through the snowpack. On a daily basis, the relationships using air temperature or net all-wave radiation as sole index both explained nearly 70% of snowmelt outflow for the same period. Combining these two parameters with rainfall in the same equation increased the explained variance to 85%.


2009 ◽  
Vol 54 (6) ◽  
pp. 1094-1113 ◽  
Author(s):  
ABDELGHANI BOUDHAR ◽  
LAHOUCINE HANICH ◽  
GILLES BOULET ◽  
BENOIT DUCHEMIN ◽  
BRAHIM BERJAMY ◽  
...  

1990 ◽  
Vol 36 (123) ◽  
pp. 217-221 ◽  
Author(s):  
Roger J. Braithwaite ◽  
Ole B. Olesen

AbstractDaily ice ablation on two outlet glaciers from the Greenland ice sheet, Nordbogletscher (1979–83) and Qamanârssûp sermia (1980–86), is related to air temperature by a linear regression equation. Analysis of this ablation-temperature equation with the help of a simple energy-balance model shows that sensible-heat flux has the greatest temperature response and accounts for about one-half of the temperature response of ablation. Net radiation accounts for about one-quarter of the temperature response of ablation, and latent-heat flux and errors account for the remainder. The temperature response of sensible-heat flux at QQamanârssûp sermia is greater than at Nordbogletscher mainly due to higher average wind speeds. The association of high winds with high temperatures during Föhn events further increases sensible-heat flux. The energy-balance model shows that ablation from a snow surface is only about half that from an ice surface at the same air temperature.


2021 ◽  
Vol 35 (2) ◽  
Author(s):  
Akansha Patel ◽  
Ajanta Goswami ◽  
Jaydeo K. Dharpure ◽  
Meloth Thamban ◽  
Parmanand Sharma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document