scholarly journals A new data assimilation approach for improving hydrologic prediction using remotely-sensed soil moisture retrievals

2008 ◽  
Vol 5 (4) ◽  
pp. 2005-2044 ◽  
Author(s):  
W. T. Crow ◽  
D. Ryu

Abstract. A number of recent studies have focused on enhancing hydrologic prediction via the assimilation of remotely-sensed surface soil moisture retrievals into a hydrologic model. The majority of these approaches have viewed the problem from purely a state or parameter estimation perspective in which remotely-sensed soil moisture estimates are assimilated to improve the characterization of pre-storm soil moisture conditions in a hydrologic model, and consequently, its simulation of runoff response to subsequent rainfall. However, recent work has demonstrated that soil moisture retrievals can also be used to filter errors present in satellite-based rainfall accumulation products. This result implies that soil moisture retrievals have potential benefit for characterizing both antecedent moisture conditions (required to estimate sub-surface flow intensities and subsequent surface runoff efficiencies) and storm-scale rainfall totals (required to estimate the total surface runoff volume). In response, this work presents a new sequential data assimilation system that exploits remotely-sensed surface soil moisture retrievals to simultaneously improve estimates of both pre-storm soil moisture conditions and storm-scale rainfall accumulations. Preliminary testing of the system, via a synthetic twin data assimilation experiment based on the Sacramento hydrologic model and data collected from the Model Parameterization Experiment, suggests that the new approach is more efficient at improving stream flow predictions than data assimilation techniques focusing exclusively on the constraint of antecedent soil moisture conditions.

2009 ◽  
Vol 13 (1) ◽  
pp. 1-16 ◽  
Author(s):  
W. T. Crow ◽  
D. Ryu

Abstract. A number of recent studies have focused on enhancing runoff prediction via the assimilation of remotely-sensed surface soil moisture retrievals into a hydrologic model. The majority of these approaches have viewed the problem from purely a state or parameter estimation perspective in which remotely-sensed soil moisture estimates are assimilated to improve the characterization of pre-storm soil moisture conditions in a hydrologic model, and consequently, its simulation of runoff response to subsequent rainfall. However, recent work has demonstrated that soil moisture retrievals can also be used to filter errors present in satellite-based rainfall accumulation products. This result implies that soil moisture retrievals have potential benefit for characterizing both antecedent moisture conditions (required to estimate sub-surface flow intensities and subsequent surface runoff efficiencies) and storm-scale rainfall totals (required to estimate the total surface runoff volume). In response, this work presents a new sequential data assimilation system that exploits remotely-sensed surface soil moisture retrievals to simultaneously improve estimates of both pre-storm soil moisture conditions and storm-scale rainfall accumulations. Preliminary testing of the system, via a synthetic twin data assimilation experiment based on the Sacramento hydrologic model and data collected from the Model Parameterization Experiment, suggests that the new approach is more efficient at improving stream flow predictions than data assimilation techniques focusing solely on the constraint of antecedent soil moisture conditions.


2014 ◽  
Vol 15 (5) ◽  
pp. 1832-1848 ◽  
Author(s):  
Fan Chen ◽  
Wade T. Crow ◽  
Dongryeol Ryu

Abstract Uncertainties in precipitation forcing and prestorm soil moisture states represent important sources of error in streamflow predictions obtained from a hydrologic model. An earlier synthetic twin experiment has demonstrated that error in both antecedent soil moisture states and rainfall forcing can be filtered by assimilating remotely sensed surface soil moisture retrievals. This opens up the possibility of applying satellite soil moisture estimates to address both key sources of error in hydrologic model predictions. Here, in an attempt to extend the synthetic analysis into a real-data environment, two satellite-based surface soil moisture products—based on both passive and active microwave remote sensing—are assimilated using the same dual forcing/state correction approach. A bias correction scheme is implemented to remove bias in background forecasts caused by synthetic perturbations in the ensemble filtering routines, and a triple collocation–based technique is adopted to derive rescaled observations and observation error variances. Results are largely in agreement with the earlier synthetic analysis. That is, the correction of satellite-derived rainfall forcing is able to improve streamflow prediction, especially during relatively high-flow periods. In contrast, prestorm soil moisture state correction is more efficient in improving the base flow component of streamflow. When rainfall and soil moisture state corrections are combined, the RMSE of both the high- and low-flow components of streamflow can be reduced by ~40% and ~30%, respectively. However, an unresolved issue is that soil moisture data assimilation also leads to underprediction of very intense precipitation/high-flow events.


2015 ◽  
Vol 19 (12) ◽  
pp. 4831-4844 ◽  
Author(s):  
C. Draper ◽  
R. Reichle

Abstract. A 9 year record of Advanced Microwave Scanning Radiometer – Earth Observing System (AMSR-E) soil moisture retrievals are assimilated into the Catchment land surface model at four locations in the US. The assimilation is evaluated using the unbiased mean square error (ubMSE) relative to watershed-scale in situ observations, with the ubMSE separated into contributions from the subseasonal (SMshort), mean seasonal (SMseas), and inter-annual (SMlong) soil moisture dynamics. For near-surface soil moisture, the average ubMSE for Catchment without assimilation was (1.8 × 10−3 m3 m−3)2, of which 19 % was in SMlong, 26 % in SMseas, and 55 % in SMshort. The AMSR-E assimilation significantly reduced the total ubMSE at every site, with an average reduction of 33 %. Of this ubMSE reduction, 37 % occurred in SMlong, 24 % in SMseas, and 38 % in SMshort. For root-zone soil moisture, in situ observations were available at one site only, and the near-surface and root-zone results were very similar at this site. These results suggest that, in addition to the well-reported improvements in SMshort, assimilating a sufficiently long soil moisture data record can also improve the model representation of important long-term events, such as droughts. The improved agreement between the modeled and in situ SMseas is harder to interpret, given that mean seasonal cycle errors are systematic, and systematic errors are not typically targeted by (bias-blind) data assimilation. Finally, the use of 1-year subsets of the AMSR-E and Catchment soil moisture for estimating the observation-bias correction (rescaling) parameters is investigated. It is concluded that when only 1 year of data are available, the associated uncertainty in the rescaling parameters should not greatly reduce the average benefit gained from data assimilation, although locally and in extreme years there is a risk of increased errors.


2006 ◽  
Vol 7 (3) ◽  
pp. 421-432 ◽  
Author(s):  
Wade T. Crow ◽  
Emiel Van Loon

Abstract Data assimilation approaches require some type of state forecast error covariance information in order to optimally merge model predictions with observations. The ensemble Kalman filter (EnKF) dynamically derives such information through a Monte Carlo approach and the introduction of random noise in model states, fluxes, and/or forcing data. However, in land data assimilation, relatively little guidance exists concerning strategies for selecting the appropriate magnitude and/or type of introduced model noise. In addition, little is known about the sensitivity of filter prediction accuracy to (potentially) inappropriate assumptions concerning the source and magnitude of modeling error. Using a series of synthetic identical twin experiments, this analysis explores the consequences of making incorrect assumptions concerning the source and magnitude of model error on the efficiency of assimilating surface soil moisture observations to constrain deeper root-zone soil moisture predictions made by a land surface model. Results suggest that inappropriate model error assumptions can lead to circumstances in which the assimilation of surface soil moisture observations actually degrades the performance of a land surface model (relative to open-loop assimilations that lack a data assimilation component). Prospects for diagnosing such circumstances and adaptively correcting the culpable model error assumptions using filter innovations are discussed. The dual assimilation of both runoff (from streamflow) and surface soil moisture observations appears to offer a more robust assimilation framework where incorrect model error assumptions are more readily diagnosed via filter innovations.


2017 ◽  
Vol 21 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
David Fairbairn ◽  
Alina Lavinia Barbu ◽  
Adrien Napoly ◽  
Clément Albergel ◽  
Jean-François Mahfouf ◽  
...  

Abstract. This study evaluates the impact of assimilating surface soil moisture (SSM) and leaf area index (LAI) observations into a land surface model using the SAFRAN–ISBA–MODCOU (SIM) hydrological suite. SIM consists of three stages: (1) an atmospheric reanalysis (SAFRAN) over France, which forces (2) the three-layer ISBA land surface model, which then provides drainage and runoff inputs to (3) the MODCOU hydro-geological model. The drainage and runoff outputs from ISBA are validated by comparing the simulated river discharge from MODCOU with over 500 river-gauge observations over France and with a subset of stations with low-anthropogenic influence, over several years. This study makes use of the A-gs version of ISBA that allows for physiological processes. The atmospheric forcing for the ISBA-A-gs model underestimates direct shortwave and long-wave radiation by approximately 5 % averaged over France. The ISBA-A-gs model also substantially underestimates the grassland LAI compared with satellite retrievals during winter dormancy. These differences result in an underestimation (overestimation) of evapotranspiration (drainage and runoff). The excess runoff flowing into the rivers and aquifers contributes to an overestimation of the SIM river discharge. Two experiments attempted to resolve these problems: (i) a correction of the minimum LAI model parameter for grasslands and (ii) a bias-correction of the model radiative forcing. Two data assimilation experiments were also performed, which are designed to correct random errors in the initial conditions: (iii) the assimilation of LAI observations and (iv) the assimilation of SSM and LAI observations. The data assimilation for (iii) and (iv) was done with a simplified extended Kalman filter (SEKF), which uses finite differences in the observation operator Jacobians to relate the observations to the model variables. Experiments (i) and (ii) improved the median SIM Nash scores by about 9 % and 18 % respectively. Experiment (iii) reduced the LAI phase errors in ISBA-A-gs but had little impact on the discharge Nash efficiency of SIM. In contrast, experiment (iv) resulted in spurious increases in drainage and runoff, which degraded the median discharge Nash efficiency by about 7 %. The poor performance of the SEKF originates from the observation operator Jacobians. These Jacobians are dampened when the soil is saturated and when the vegetation is dormant, which leads to positive biases in drainage and/or runoff and to insufficient corrections during winter, respectively. Possible ways to improve the model are discussed, including a new multi-layer diffusion model and a more realistic response of photosynthesis to temperature in mountainous regions. The data assimilation should be advanced by accounting for model and forcing uncertainties.


2006 ◽  
Vol 7 (6) ◽  
pp. 1308-1322 ◽  
Author(s):  
O. Merlin ◽  
A. Chehbouni ◽  
G. Boulet ◽  
Y. Kerr

Abstract Near-surface soil moisture retrieved from Soil Moisture and Ocean Salinity (SMOS)-type data is downscaled and assimilated into a distributed soil–vegetation–atmosphere transfer (SVAT) model with the ensemble Kalman filter. Because satellite-based meteorological data (notably rainfall) are not currently available at finescale, coarse-scale data are used as forcing in both the disaggregation and the assimilation. Synthetic coarse-scale observations are generated from the Monsoon ‘90 data by aggregating the Push Broom Microwave Radiometer (PBMR) pixels covering the eight meteorological and flux (METFLUX) stations and by averaging the meteorological measurements. The performance of the disaggregation/assimilation coupling scheme is then assessed in terms of surface soil moisture and latent heat flux predictions over the 19-day period of METFLUX measurements. It is found that the disaggregation improves the assimilation results, and vice versa, the assimilation of the disaggregated microwave soil moisture improves the spatial distribution of surface soil moisture at the observation time. These results are obtainable regardless of the spatial scale at which solar radiation, air temperature, wind speed, and air humidity are available within the microwave pixel and for an assimilation frequency varying from 1/1 day to 1/5 days.


Sign in / Sign up

Export Citation Format

Share Document