scholarly journals Integration of vegetation indices into a water balance model to estimate evapotranspiration of wheat and corn

2010 ◽  
Vol 7 (5) ◽  
pp. 8631-8659
Author(s):  
F. L. M. Padilla ◽  
M. P. González-Dugo ◽  
P. Gavilán ◽  
J. Domínguez

Abstract. Vegetation indices (VIs) have been traditionally used for quantitative monitoring of vegetation. Remotely sensed radiometric measurements of visible and infrared solar energy, which is reflected or emitted by plant canopies, can be used to obtain rapid, non-destructive estimates of certain canopy attributes and parameters. One parameter of special interest for water management applications, is the crop coefficient employed by the FAO-56 model to derive actual crop evapotranspiration (ET). The aim of this study was to evaluate a methodology that combines the basal crop coefficient derived from VIs with a daily soil water balance in the root zone to estimate daily evapotranspiration rates for corn and wheat crops at field scale. The ability of the model to trace water stress in these crops was also assessed. Vegetation indices were first retrieved from field hand-held radiometer measurements and then from Landsat 5 and 7 satellite images. The results of the model were validated using two independent measurement systems for ET and regular soil moisture monitoring, in order to evaluate the behavior of the soil and atmosphere components of the model. ET estimates were compared with latent heat flux measured by an eddy covariance system and with weighing lysimeter measurements. Average overestimates of daily ET of 8 and 11% were obtained for corn and wheat, respectively, with good agreement between the estimated and measured root-zone water deficit for both crops when field radiometry was employed. Satellite remote-sensing inputs overestimated ET by 4 to 9%, showing a non-significant lost of accuracy when the satellite sensor data replaced the field radiometry data. The model was also used to monitor the water stress during the 2009 growing season, detecting several periods of water stress in both crops. Some of these stresses occurred during stages like grain filling, when the water stress is know to have a negative effect on yield. This fact could explain the lower yield reached compared to local yield statistics for wheat and corn. The results showed that the model can be used to calculate the water requirements of these crops in irrigated areas and that its ability to monitor water stress deserves further research.

2011 ◽  
Vol 15 (4) ◽  
pp. 1213-1225 ◽  
Author(s):  
F. L. M. Padilla ◽  
M. P. González-Dugo ◽  
P. Gavilán ◽  
J. Domínguez

Abstract. Vegetation indices (VIs) have been traditionally used for quantitative monitoring of vegetation. Remotely sensed radiometric measurements of visible and infrared solar energy, which is reflected or emitted by plant canopies, can be used to obtain rapid, non-destructive estimates of certain canopy attributes and parameters. One parameter of special interest for water management applications, is the crop coefficient employed by the FAO-56 model to derive actual crop evapotranspiration (ET). The aim of this study was to evaluate a methodology that combines the basal crop coefficient derived from VIs with a daily soil water balance in the root zone to estimate daily evapotranspiration rates for corn and wheat crops at field scale. The ability of the model to trace water stress in these crops was also assessed. Vegetation indices were first retrieved from field hand-held radiometer measurements and then from Landsat 5 and 7 satellite images. The results of the model were validated using two independent measurement systems for ET and regular soil moisture monitoring, in order to evaluate the behavior of the soil and atmosphere components of the model. ET estimates were compared with latent heat flux measured by an eddy covariance system and with weighing lysimeter measurements. Average overestimates of daily ET of 8 and 11% were obtained for corn and wheat, respectively, with good agreement between the estimated and measured root-zone water deficit for both crops when field radiometry was employed. When the satellite sensor data replaced the field radiometry data the overestimation figures slightly changed to 9 and 6% for the same two crops. The model was also used to monitor the water stress during the 2009 growing season, detecting several periods of water stress in both crops. Some of these stresses occurred during stages like grain filling, when the water stress is know to have a negative effect on yield. This fact could explain the lower yield reached compared to local yield statistics for wheat and corn. The results showed that the model can be used to calculate the water requirements of these crops in irrigated areas and that its ability to monitor water stress deserves further research.


2011 ◽  
Vol 47 (1) ◽  
pp. 1-25 ◽  
Author(s):  
M. K. V. CARR ◽  
J. W. KNOX

SUMMARYThe results of research on the water relations and irrigation needs of sugar cane are collated and summarized in an attempt to link fundamental studies on crop physiology to irrigation practices. Background information on the centres of production of sugar cane is followed by reviews of (1) crop development, including roots; (2) plant water relations; (3) crop water requirements; (4) water productivity; (5) irrigation systems and (6) irrigation scheduling. The majority of the recent research published in the international literature has been conducted in Australia and southern Africa. Leaf/stem extension is a more sensitive indicator of the onset of water stress than stomatal conductance or photosynthesis. Possible mechanisms by which cultivars differ in their responses to drought have been described. Roots extend in depth at rates of 5–18 mm d−1 reaching maximum depths of > 4 m in ca. 300 d providing there are no physical restrictions. The Penman-Monteith equation and the USWB Class A pan both give good estimates of reference crop evapotranspiration (ETo). The corresponding values for the crop coefficient (Kc) are 0.4 (initial stage), 1.25 (peak season) and 0.75 (drying off phase). On an annual basis, the total water-use (ETc) is in the range 1100–1800 mm, with peak daily rates of 6–15 mm d−1. There is a linear relationship between cane/sucrose yields and actual evapotranspiration (ETc) over the season, with slopes of about 100 (cane) and 13 (sugar) kg (ha mm)−1 (but variable). Water stress during tillering need not result in a loss in yield because of compensatory growth on re-watering. Water can be withheld prior to harvest for periods of time up to the equivalent of twice the depth of available water in the root zone. As alternatives to traditional furrow irrigation, drag-line sprinklers and centre pivots have several advantages, such as allowing the application of small quantities of water at frequent intervals. Drip irrigation should only be contemplated when there are well-organized management systems in place. Methods for scheduling irrigation are summarized and the reasons for their limited uptake considered. In conclusion, the ‘drivers for change’, including the need for improved environmental protection, influencing technology choice if irrigated sugar cane production is to be sustainable are summarized.


2018 ◽  
Vol 61 (2) ◽  
pp. 533-548 ◽  
Author(s):  
J. Burdette Barker ◽  
Christopher M. U. Neale ◽  
Derek M. Heeren ◽  
Andrew E. Suyker

Abstract. Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the Penman-Monteith (PM) approximation for comparison. We compared energy balance fluxes and computed ET with measurements from three eddy covariance systems within the study area. Net radiation was underestimated by the model when data from a local weather station were used as input, with mean bias error (MBE) of -33.8 to -40.9 W m-2. The measured incident solar radiation appeared to be biased low. The net radiation model performed more satisfactorily when data from the eddy covariance flux towers were input into the model, with MBE of 5.3 to 11.2 W m-2. We removed bias in the daily energy balance ET using a dimensionless multiplier that ranged from 0.89 to 0.99. The bias-corrected TSEB ET, using weather data from a local weather station and with local ground data in thermal infrared imagery corrections, had MBE = 0.09 mm d-1 (RMSE = 1.49 mm d-1) for PM and MBE = 0.04 mm d-1 (RMSE = 1.18 mm d-1) for PT. The hybrid model used statistical interpolation to combine the two ET estimates. We computed weighting factors for statistical interpolation to be 0.37 to 0.50 for the PM method and 0.56 to 0.64 for the PT method. Provisions were added to the model, including a real-time crop coefficient methodology, which allowed seasonal crop coefficients to be computed with relatively few remote sensing images. This methodology performed well when compared to basal crop coefficients computed using a full season of input imagery. Water balance ET compared favorably with the eddy covariance data after incorporating the TSEB ET. For a validation dataset, the magnitude of MBE decreased from -0.86 mm d-1 (RMSE = 1.37 mm d-1) for the Kcbrf alone to -0.45 mm d-1 (RMSE = 0.98 mm d-1) and -0.39 mm d-1 (RMSE = 0.95 mm d-1) with incorporation of the TSEB ET using the PM and PT methods, respectively. However, the magnitudes of MBE and RMSE were increased for a running average of daily computations in the full May-October periods. The hybrid model did not necessarily result in improved model performance. However, the water balance model is adaptable for real-time irrigation scheduling and may be combined with forecasted reference ET, although the low temporal frequency of satellite imagery is expected to be a challenge in real-time irrigation management. Keywords: Center-pivot irrigation, ET estimation methods, Evapotranspiration, Irrigation scheduling, Irrigation water balance, Model validation, Variable-rate irrigation.


2007 ◽  
Vol 87 (3) ◽  
pp. 315-327 ◽  
Author(s):  
Uttam Kumar Mandal ◽  
U.S. Victor ◽  
N.N. Srivastava ◽  
K.L. Sharma ◽  
V. Ramesh ◽  
...  

2020 ◽  
Author(s):  
Elisabet Carpintero ◽  
Ana Andreu ◽  
Pedro J. Gómez-Giráldez ◽  
María P. González-Dugo

<p>In water-controlled systems, the evapotranspiration (ET) is a key indicator of the ecosystem health and the water status of the vegetation. Continuous monitoring of this variable over Mediterranean savannas (landscape consisting of widely-spaced oak trees combined with pasture, crops and shrubs) provides the baseline required to evaluate actual threats (e.g. vulnerable areas, land-use changes, invasive species, over-grazing, bush encroachment, etc.) and design management actions leading to reduce the economic and environmental vulnerability. However, the patched nature of these agropastoral ecosystems, with different uses (agricultural, farming, hunting), and their complex canopy structure, with various layers of vegetation and bare soil, pose additional difficulties. The combination of satellite mission with high/medium spatial/temporal resolutions provides appropriate information to characterize the variability of the Mediterranean savanna, assessing resource availability at local scales.</p><p>The aim of this work is to quantify ET and water stress at field-scale over a dehesa ecosystem located in Southern Spain, coupling remote sensing-based water and energy balance models. A soil water balance has been applied for five consecutive hydrological years (between 2012 and 2017) using the vegetation index (VI) based approach (VI-ETo model), on a daily scale and 30 m of spatial resolution. It combines FAO56 guidelines with the spectral response in the visible and near-infrared regions to compute more accurately the canopy transpiration. Landsat-8 and Sentinel-2 images, meteorological, and soil data have been used. This approach has been adapted to dehesa ecosystem, taking into account the double strata of annual grasses and tree canopies. However, the lack of available information about the spatial distribution of soil properties and the presence of multiple vegetation layers with very different root depths increase the uncertainty of water balance calculations. The combination with energy balance-based models may overcome these issues. In this case, the two-source energy balance model (TSEB) has been applied to explore the possibilities of integrating both approaches.  ET was estimated using TSEB in the days with available thermal data, more accurately assessing the reduction on ET due to soil water deficit, and allowing the adjustment of water stress coefficient in the VI-ETo model.</p><p>The modeled ET results have been validated with field observations (Santa Clotilde; 38º12’N, 4º17’ W; 736 m a.s.l.), measuring the energy balance components with an eddy covariance system and complementary instruments. The VI-ETo model has proven to be robust to monitor the vegetation water use of this complex ecosystem. However, the integration of the energy balance modelling has improved the estimations during the dry periods, with highly stressed vegetation, enabling a continuous monitoring of ET and water stress over this landscape.</p>


2006 ◽  
Vol 81 (3) ◽  
pp. 335-357 ◽  
Author(s):  
Dirk Raes ◽  
Sam Geerts ◽  
Emmanuel Kipkorir ◽  
Joost Wellens ◽  
Ali Sahli

2010 ◽  
Vol 14 (10) ◽  
pp. 2099-2120 ◽  
Author(s):  
J. P. Kochendorfer ◽  
J. A. Ramírez

Abstract. The statistical-dynamical annual water balance model of Eagleson (1978) is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985) canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM). The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green leaf area index (LAI) suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration). Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends to be most productive in sandier soils despite their lower water holding capacity. Although the determination of LAI based on complete or near-complete utilization of soil moisture is not a new approach in ecohydrology, this paper demonstrates its use for the first time with a new monthly statistical-dynamical model of the water balance. Accordingly, the SDEM provides a new framework for studying the controls of soil texture and climate on vegetation density and evapotranspiration.


2008 ◽  
Vol 5 (2) ◽  
pp. 579-648
Author(s):  
J. P. Kochendorfer ◽  
J. A. Ramírez

Abstract. The statistical-dynamical annual water balance model of Eagleson (1978) is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985) canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM). The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green Leaf Area Index (LAI) suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration). Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends to be most productive in sandier soils despite their lower water holding capacity. Although the determination of LAI based on near-complete utilization of soil moisture is not a new approach in ecohydrology, this paper demonstrates its use for the first time with a new monthly statistical-dynamical model of the water balance. Accordingly, the SDEM provides a new framework for studying the controls of soil texture and climate on vegetation density and evapotranspiration.


Sign in / Sign up

Export Citation Format

Share Document