Monitoring evapotranspiration and water stress of Mediterranean oak savannas using optical and thermal remote sensing-based approaches

Author(s):  
Elisabet Carpintero ◽  
Ana Andreu ◽  
Pedro J. Gómez-Giráldez ◽  
María P. González-Dugo

<p>In water-controlled systems, the evapotranspiration (ET) is a key indicator of the ecosystem health and the water status of the vegetation. Continuous monitoring of this variable over Mediterranean savannas (landscape consisting of widely-spaced oak trees combined with pasture, crops and shrubs) provides the baseline required to evaluate actual threats (e.g. vulnerable areas, land-use changes, invasive species, over-grazing, bush encroachment, etc.) and design management actions leading to reduce the economic and environmental vulnerability. However, the patched nature of these agropastoral ecosystems, with different uses (agricultural, farming, hunting), and their complex canopy structure, with various layers of vegetation and bare soil, pose additional difficulties. The combination of satellite mission with high/medium spatial/temporal resolutions provides appropriate information to characterize the variability of the Mediterranean savanna, assessing resource availability at local scales.</p><p>The aim of this work is to quantify ET and water stress at field-scale over a dehesa ecosystem located in Southern Spain, coupling remote sensing-based water and energy balance models. A soil water balance has been applied for five consecutive hydrological years (between 2012 and 2017) using the vegetation index (VI) based approach (VI-ETo model), on a daily scale and 30 m of spatial resolution. It combines FAO56 guidelines with the spectral response in the visible and near-infrared regions to compute more accurately the canopy transpiration. Landsat-8 and Sentinel-2 images, meteorological, and soil data have been used. This approach has been adapted to dehesa ecosystem, taking into account the double strata of annual grasses and tree canopies. However, the lack of available information about the spatial distribution of soil properties and the presence of multiple vegetation layers with very different root depths increase the uncertainty of water balance calculations. The combination with energy balance-based models may overcome these issues. In this case, the two-source energy balance model (TSEB) has been applied to explore the possibilities of integrating both approaches.  ET was estimated using TSEB in the days with available thermal data, more accurately assessing the reduction on ET due to soil water deficit, and allowing the adjustment of water stress coefficient in the VI-ETo model.</p><p>The modeled ET results have been validated with field observations (Santa Clotilde; 38º12’N, 4º17’ W; 736 m a.s.l.), measuring the energy balance components with an eddy covariance system and complementary instruments. The VI-ETo model has proven to be robust to monitor the vegetation water use of this complex ecosystem. However, the integration of the energy balance modelling has improved the estimations during the dry periods, with highly stressed vegetation, enabling a continuous monitoring of ET and water stress over this landscape.</p>

2018 ◽  
Vol 61 (2) ◽  
pp. 533-548 ◽  
Author(s):  
J. Burdette Barker ◽  
Christopher M. U. Neale ◽  
Derek M. Heeren ◽  
Andrew E. Suyker

Abstract. Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the Penman-Monteith (PM) approximation for comparison. We compared energy balance fluxes and computed ET with measurements from three eddy covariance systems within the study area. Net radiation was underestimated by the model when data from a local weather station were used as input, with mean bias error (MBE) of -33.8 to -40.9 W m-2. The measured incident solar radiation appeared to be biased low. The net radiation model performed more satisfactorily when data from the eddy covariance flux towers were input into the model, with MBE of 5.3 to 11.2 W m-2. We removed bias in the daily energy balance ET using a dimensionless multiplier that ranged from 0.89 to 0.99. The bias-corrected TSEB ET, using weather data from a local weather station and with local ground data in thermal infrared imagery corrections, had MBE = 0.09 mm d-1 (RMSE = 1.49 mm d-1) for PM and MBE = 0.04 mm d-1 (RMSE = 1.18 mm d-1) for PT. The hybrid model used statistical interpolation to combine the two ET estimates. We computed weighting factors for statistical interpolation to be 0.37 to 0.50 for the PM method and 0.56 to 0.64 for the PT method. Provisions were added to the model, including a real-time crop coefficient methodology, which allowed seasonal crop coefficients to be computed with relatively few remote sensing images. This methodology performed well when compared to basal crop coefficients computed using a full season of input imagery. Water balance ET compared favorably with the eddy covariance data after incorporating the TSEB ET. For a validation dataset, the magnitude of MBE decreased from -0.86 mm d-1 (RMSE = 1.37 mm d-1) for the Kcbrf alone to -0.45 mm d-1 (RMSE = 0.98 mm d-1) and -0.39 mm d-1 (RMSE = 0.95 mm d-1) with incorporation of the TSEB ET using the PM and PT methods, respectively. However, the magnitudes of MBE and RMSE were increased for a running average of daily computations in the full May-October periods. The hybrid model did not necessarily result in improved model performance. However, the water balance model is adaptable for real-time irrigation scheduling and may be combined with forecasted reference ET, although the low temporal frequency of satellite imagery is expected to be a challenge in real-time irrigation management. Keywords: Center-pivot irrigation, ET estimation methods, Evapotranspiration, Irrigation scheduling, Irrigation water balance, Model validation, Variable-rate irrigation.


2006 ◽  
Vol 81 (3) ◽  
pp. 335-357 ◽  
Author(s):  
Dirk Raes ◽  
Sam Geerts ◽  
Emmanuel Kipkorir ◽  
Joost Wellens ◽  
Ali Sahli

2009 ◽  
Vol 13 (7) ◽  
pp. 1061-1074 ◽  
Author(s):  
M. Minacapilli ◽  
C. Agnese ◽  
F. Blanda ◽  
C. Cammalleri ◽  
G. Ciraolo ◽  
...  

Abstract. Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB) and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS), near-infrared (NIR) and thermal (TIR) observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to detect the spatial variability of crop parameters. Considering that the study area is characterized by typical spatially sparse Mediterranean vegetation, i.e. olive, citrus and vineyards, alternating bare soil and canopy, we focused the attention on the main conceptual differences between one-source and two-sources energy balance models. Two different models have been tested: the widely used one-source SEBAL model, where soil and vegetation are considered as the sole source (mostly appropriate in the case of uniform vegetation coverage) and the two-sources TSEB model, where soil and vegetation components of the surface energy balance are treated separately. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared vs. the outputs of the agro-hydrological SWAP model, which was applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. Remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to set up the upper boundary condition of SWAP. Actual evapotranspiration values obtained from the application of the soil water balance model SWAP have been considered as the reference to be used for energy balance models accuracy assessment. Airborne hyperspectral data acquired during a NERC (Natural Environment Research Council, UK) campaign in 2005 have been used. The results of this investigation seem to prove a slightly better agreement between SWAP and TSEB for some fields of the study area. Further investigations are programmed in order to confirm these indications.


2021 ◽  
Vol 13 (6) ◽  
pp. 1133
Author(s):  
Mohamed Hakim Kharrou ◽  
Vincent Simonneaux ◽  
Salah Er-Raki ◽  
Michel Le Page ◽  
Saïd Khabba ◽  
...  

This study aims to evaluate a remote sensing-based approach to allow estimation of the temporal and spatial distribution of crop evapotranspiration (ET) and irrigation water requirements over irrigated areas in semi-arid regions. The method is based on the daily step FAO-56 Soil Water Balance model combined with a time series of basal crop coefficients and the fractional vegetation cover derived from high-resolution satellite Normalized Difference Vegetation Index (NDVI) imagery. The model was first calibrated and validated at plot scale using ET measured by eddy-covariance systems over wheat fields and olive orchards representing the main crops grown in the study area of the Haouz plain (central Morocco). The results showed that the model provided good estimates of ET for wheat and olive trees with a root mean square error (RMSE) of about 0.56 and 0.54 mm/day respectively. The model was then used to compare remotely sensed estimates of irrigation requirements (RS-IWR) and irrigation water supplied (WS) at plot scale over an irrigation district in the Haouz plain through three growing seasons. The comparison indicated a large spatio-temporal variability in irrigation water demands and supplies; the median values of WS and RS-IWR were 130 (175), 117 (175) and 118 (112) mm respectively in the 2002–2003, 2005–2006 and 2008–2009 seasons. This could be attributed to inadequate irrigation supply and/or to farmers’ socio-economic considerations and management practices. The findings demonstrate the potential for irrigation managers to use remote sensing-based models to monitor irrigation water usage for efficient and sustainable use of water resources.


OENO One ◽  
2014 ◽  
Vol 48 (1) ◽  
pp. 1 ◽  
Author(s):  
Rémi Gaudin ◽  
Kamal Kansou ◽  
Jean-Christophe Payan ◽  
Anne Pellegrino ◽  
Christian Gary

<p style="text-align: justify;"><strong>Aims</strong>: A water stress index based on a water balance model was tested as a tool for classifying the water stress paths experienced by grapevines in various French Mediterranean vineyards. The relations between the index value and grapevine yield and berry quality (sugars, organic acids, anthocyanins) at harvest were investigated.</p><p style="text-align: justify;"><strong>Methods and results</strong>: A data set of 102 situations, each combining one location, one variety, one vintage and one water regime (irrigation or, most often, no irrigation), was collected for the study. The Fraction of Transpirable Soil Water (FTSW) was simulated by a unique-soil-reservoir water balance model at a daily time step. Five classes of water deficit were delimited from specific decreasing thresholds of FTSW over four periods between flowering and harvest. These thresholds were derived from predawn leaf water potential values because over decades, grapegrowers and researchers have shared references and built expertise by using this variable throughout the Mediterranean region. A water stress index resulting from the levels of water deficit reached at each of the four periods of the cycle was calculated. This index was correlated with yield per vine, berry weight, and berry sugar and organic acid contents but not with berry anthocyanin content.</p><p style="text-align: justify;"><strong>Conclusion</strong>: A simple water stress index, based on the water balance model, exhibited significant correlations with yield and berry quality for various cultivars and pedo-climatic conditions in Mediterranean vineyards.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: This water stress index is a valuable tool for explaining the variations in grape yield and quality among various locations and years because it reflects the vineyard water stress history in relation to rainfall regime and soil conditions. Improvement would come from the simulation of FTSW during winter, notably for soils of high Total Transpirable Soil Water. One potential application is the quantification of water stress change brought by irrigation in Mediterranean vineyards, and its relation to grapevine production.</p>


2014 ◽  
Author(s):  
Μάριος-Ευστάθιος Σπηλιωτόπουλος

Στην παρούσα διατριβή επιχειρείται η συμβολή στη διαχείριση υδατικών πόρων μέσω της λεπτομερούς μελέτης της εξατμισοδιαπνοής που εκτιμάται από τον υπολογισμό του επιφανειακού ενεργειακού ισοζυγίου. Το επιφανειακό ενεργειακό ισοζύγιο μελετάται με τη μεθοδολογία Satellite-based energy balance for Mapping EvapoTRanspiration with Internalized Calibration (METRIC) το οποίο και εφαρμόστηκε με επιτυχία στη λεκάνη απορροής της Λίμνης Κάρλας στην Θεσσαλία. Επίσης, πραγματοποιήθηκαν μετρήσεις ανακλαστικότητας στο πεδίο χρησιμοποιώντας το φορητό φασματοραδιόμετρο Geophysical Environmental Research (GER) 1500. Εκατοντάδες επίγειες μετρήσεις ανακλαστικότητας μετατρέπονται στη συνέχεια, με τη χρήση των Relative Spectral Response (RSR) των Landsat TM/ETM+, και με παρεμβολή, σε τιμές συγκρίσιμες με τις αντίστοιχες των αντίστοιχων καναλιών του δορυφόρου Landsat 7. Σαν τελικό αποτέλεσμα δείκτες βλάστησης (VI) μπορούν πλέον να παραχθούν με ακρίβεια και χωρίς την ανάγκη διενέργειας ατμοσφαιρικής διόρθωσης πάνω από καλλιέργειες βαμβακιού, σιταριού, καλαμποκιού, μηδικής και ζαχαροτεύτλων στην περιοχή μελέτης. Περαιτέρω διερεύνηση των δεικτών οδηγεί στην εξαγωγή μέσω παλινδρόμησης ξεχωριστών σχέσεων κι έτσι παράγεται πλέον μια ξεχωριστή τιμή του ειδικού φυτικού συντελεστή Kc για κάθε καλλιέργεια και για κάθε φαινολογικό στάδιο με χωρική ανάλυση 30 m x 30 m. Οι τιμές των φυτικών συντελεστών μπορούν πλέον να εισαχθούν σε μια μέθοδο υπολογισμού υδατικών απαιτήσεων όπως το μοντέλο CROPWAT και να δώσουν τελικά τιμές αρδευτικών απαιτήσεων ανά καλλιέργεια σε mm ύψους βροχής. Κατόπιν εφαρμόζεται η μεθοδολογία καταβιβασμού (downscaling) κατά την οποία διαφαίνεται ότι είναι εφικτή η πρόβλεψη μιας 30 m x 30 m ETa Landsat απεικόνισης για την περιοχή της λίμνης Κάρλας εφαρμόζοντας ένα απλό γραμμικό μοντέλο (linear regression) παραγόμενο από εικόνες MODIS χωρικής ανάλυσης 250 m x 250 m με την προϋπόθεση φυσικά ότι η μεταβλητότητα μέσα σε ένα εικονοστοιχείο MODIS (250 m x 250 m) θεωρείται αναλογικά σταθερή μεταξύ του χρόνου από την ανάκτηση της πρώτης έως την ανάκτηση της δεύτερης εικόνας Landsat. Η μεθοδολογία καταβιβασμού εφαρμόζεται με την ίδια λογική και σε εικόνες του δείκτη NDVI και, τελικά, επιχειρείται η ανάπτυξη ενός νέου συνδυαστικού μοντέλου το οποίο ενσωματώνει τη μεθοδολογία της ανάκτησης δεικτών βλάστησης από επίγεια δεδομένα, και τον καταβιβασμό τιμών του δείκτη βλάστησης NDVI μεταξύ Landsat και MODIS προς όφελος της δημιουργίας γραμμικών εξισώσεων που δίνουν απευθείας καθημερινές τιμές του φυτικού συντελεστή Kc με χωρική ανάλυση 30 m x 30 m. Η πιστοποίηση της πραγματικής εξατμισοδιαπνοής με τη μεθοδολογία METRIC γίνεται βάσει της θεωρητικής μεθόδου Penman-Monteith. Σε δεύτερο στάδιο, η προτεινόμενη μεθοδολογία πιστοποιείται, ανεξάρτητα, με νέες εικόνες Landsat 7 και Landsat 8, οι οποίες δεν έχουν χρησιμοποιηθεί στην ανάπτυξη της μεθοδολογίας. Και στα δύο στάδια η πιστοποίηση κρίνεται αρκετά ικανοποιητική. Τέλος, γίνεται μια ανάλυση ευαισθησίας της εκτίμησης των αρδευτικών αναγκών σε συνάρτηση με το πιθανό σφάλμα που προέρχεται από την εκτίμηση των φυτικών συντελεστών. Τα αποτελέσματα και σε αυτή την περίπτωση είναι ενθαρρυντικά.


Irriga ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 247-262
Author(s):  
João Maurício Fernandes Souza ◽  
José Alves Jr. ◽  
Derblai Casaroli ◽  
Adão Wagner Pego Evangelista ◽  
Marcio Mesquita

VALIDAÇÃO DO MODELO SAFER NA ESTIMATIVA DA EVAPOTRANSPIRAÇÃO DA CANA-DE-AÇÚCAR     JOÃO MAURÍCIO FERNANDES SOUZA1; JOSÉ ALVES JÚNIOR2 DERBLAI CASAROLI2; ADÃO WAGNER PEGO EVANGELISTA2 E MARCIO MESQUITA2   1 Professor Doutor: Departamento de Agronomia, Centro Universitário de Anápolis – UniEvangélica, Av. Universitária Km 3,5, Cidade Universitária, CEP: 75083-515, Anápolis, Goiás, Brasil, e-mail: [email protected]. 2 Professores Doutores: Escola de Agronomia, Universidade Federal de Goiás - UFG, Av. Esperança s/n, Campus Samambaia, CEP 74.690-900, Goiânia, Goiás, Brasil, e-mails: [email protected], [email protected], [email protected], má[email protected]     1 RESUMO   Métodos que possam determinar o balanço hídrico de culturas a partir de imagens de satélites se mostram muito úteis, pois são capazes de propiciar a sua determinação em áreas com grande heterogeneidade e dimensão. Objetivou-se realizar um comparativo entre o método de estimativa de evapotranspiração real (ETr) obtida pelo SAFER (Simple algorithm for evapotranspiration retrieving), o balanço hídrico climatológico e de água no solo, de forma a validar a metodologia proposta como alternativa aos métodos tradicionais. O estudo foi realizado em Santo Antônio de Goiás-GO em área de 100 ha, com cana-de-açúcar (CTC-4) em sequeiro. A ETr foi estimada utilizando imagens do satélite Landsat 8 e os resultados comparados com o balanço hídrico do solo e climático de maio a agosto de 2015. Em geral, os resultados de ETr pelo SAFER, concordaram bem com os métodos tradicionais, estimando valores de ETr em média 0,70 mm dia-1 acima dos valores de estimativa obtidos com o balanço hídrico do solo e de 0,48 mm dia-1 para o balanço hídrico climatológico. O sensoriamento remoto e o modelo agrometeorológico SAFER podem ser utilizados para estimar a ETr da cana-de-açúcar na região, utilizando o ajuste ETr=0,87*ETSAFER-0,51 para o balanço hídrico do solo e o ajuste ETr=0,92*ETSAFER-0,36 para o balanço hídrico climático.   Keywords: déficit hídrico, necessidade hídrica, sensoriamento remoto, Saccharum spp.     SOUZA, J. M. F.; ALVES JÚNIOR, J.; CASAROLI, D.; EVANGELISTA, A. W. P.; MESQUITA, M. VALIDATION OF SAFER ALGORITHM TO ESTIMATE SUGARCANE CROP EVAPOTRANSPIRATION     2 ABSTRACT   Methods that can determine the water balance of cultures from satellite images prove to be very useful because they can provide its determination in large areas with high heterogeneity. The aim of this study was to compare the real evapotranspiration (ETr) estimation method obtained by SAFER (Simple Algorithm for Evapotranspiration Retrieving), to the climatological water balance and the soil water balance in order to validate the proposed methodology as an alternative to traditional methods. The study was conducted in Santo Antônio de Goiás – GO, Brazil, in a non-irrigated area with 100 hectares, planted with sugarcane (CTC-4 variety). The ETr was estimated using Landsat 8 (OLI / TIRS) satellite images and the results compared to the soil water and climate balance in the period from May toAugust 2015. In general, the results estimated by SAFER corroborated those of traditional methods, estimating ETr values of 0.70 mm dia-1, on average, above estimation values obtained with the soil water balance and 0.48 mm day-1 for the climatic water balance. The evapotranspiration estimation method using remote sensing and the agro-meteorological model SAFER can be used to estimate actual evapotranspiration (ETr) of sugarcane in the Cerrado region, using the adjustment ETr = 0.87*ETSAFER – 0.51 for the soil water balance and the adjustment ETr = 0.92*SAFER - 0.36 for the climatological water balance.   Keywords: water stress, water requirement, remote sensing, Saccharum officinarum L.


2020 ◽  
pp. 1-16
Author(s):  
Tim Hill ◽  
Christine F. Dow ◽  
Eleanor A. Bash ◽  
Luke Copland

Abstract Glacier surficial melt rates are commonly modelled using surface energy balance (SEB) models, with outputs applied to extend point-based mass-balance measurements to regional scales, assess water resource availability, examine supraglacial hydrology and to investigate the relationship between surface melt and ice dynamics. We present an improved SEB model that addresses the primary limitations of existing models by: (1) deriving high-resolution (30 m) surface albedo from Landsat 8 imagery, (2) calculating shadows cast onto the glacier surface by high-relief topography to model incident shortwave radiation, (3) developing an algorithm to map debris sufficiently thick to insulate the glacier surface and (4) presenting a formulation of the SEB model coupled to a subsurface heat conduction model. We drive the model with 6 years of in situ meteorological data from Kaskawulsh Glacier and Nàłùdäy (Lowell) Glacier in the St. Elias Mountains, Yukon, Canada, and validate outputs against in situ measurements. Modelled seasonal melt agrees with observations within 9% across a range of elevations on both glaciers in years with high-quality in situ observations. We recommend applying the model to investigate the impacts of surface melt for individual glaciers when sufficient input data are available.


Sign in / Sign up

Export Citation Format

Share Document