scholarly journals Simplifying a hydrological ensemble prediction system with a backward greedy selection of members – Part 2: Generalization in time and space

2011 ◽  
Vol 8 (2) ◽  
pp. 2783-2820 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. An uncertainty cascade model applied to stream flow forecasting seeks to evaluate the different sources of uncertainty of the complex rainfall-runoff process. The current trend focuses on the combination of Meteorological Ensemble Prediction Systems (MEPS) and hydrological model(s). However, the number of members of such a HEPS may rapidly increase to a level that may not be operationally sustainable. This article evaluates a 94% simplification of an initial 800-member HEPS, forcing 16 lumped rainfall-runoff models with the European Center for Medium-range Weather Forecasts (ECMWF MEPS). More specifically, it tests the time (local) and space (regional) generalization ability of the simplified 50-member HEPS obtained using a methodology that combines 4 main aspects: (i) optimizing information of the short-length series using k-folds cross-validation, (ii) implementing a backward greedy selection technique, (iii) guiding the selection with a linear combination of diversified scores, and (iv) formulating combination case studies at the cross-validation stage. At the local level, the transferability of the 9th day member selection was proven for the other 8 forecast horizons at an 82% success rate. At the regional level, a good performance was also achieved when the 50-member HEPS was applied to a neighbouring catchment within the same cluster. Diversity, defined as hydrological model complementarities addressing different aspects of a forecast, was identified as the critical factor for proper selection applications.

2011 ◽  
Vol 15 (11) ◽  
pp. 3327-3341 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. An uncertainty cascade model applied to stream flow forecasting seeks to evaluate the different sources of uncertainty of the complex rainfall-runoff process. The current trend focuses on the combination of Meteorological Ensemble Prediction Systems (MEPS) and hydrological model(s). However, the number of members of such a HEPS may rapidly increase to a level that may not be operationally sustainable. This paper evaluates the generalization ability of a simplification scheme of a 800-member HEPS formed by the combination of 16 lumped rainfall-runoff models with the 50 perturbed members from the European Centre for Medium-range Weather Forecasts (ECMWF) EPS. Tests are made at two levels. At the local level, the transferability of the 9th day hydrological member selection for the other 8 forecast horizons exhibits an 82% success rate. The other evaluation is made at the regional or cluster level, the transferability from one catchment to another from within a cluster of watersheds also leads to a good performance (85% success rate), especially for forecast time horizons above 3 days and when the basins that formed the cluster presented themselves a good performance on an individual basis. Diversity, defined as hydrological model complementarity addressing different aspects of a forecast, was identified as the critical factor for proper selection applications.


2011 ◽  
Vol 15 (11) ◽  
pp. 3307-3325 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. Hydrological Ensemble Prediction Systems (HEPS), obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS), have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of the number of hydrological members) that can be achieved with a HEPS configured using 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Centre for Medium-range Weather Forecasts (ECMWF). Here, Backward Greedy Selection (BGS) is proposed to assess the weight that each model must represent within a subset that offers similar or better performance than a reference set of 800 hydrological members. These hydrological models' weights represent the participation of each hydrological model within a simplified HEPS which would issue real-time forecasts in a relatively short computational time. The methodology uses a variation of the k-fold cross-validation, allowing an optimal use of the information, and employs a multi-criterion framework that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS) or the maximization of the relationship between the different scores (performance).


2011 ◽  
Vol 29 ◽  
pp. 33-42 ◽  
Author(s):  
J. A. Velázquez ◽  
F. Anctil ◽  
M. H. Ramos ◽  
C. Perrin

Abstract. An operational hydrological ensemble forecasting system based on a meteorological ensemble prediction system (M-EPS) coupled with a hydrological model searches to capture the uncertainties associated with the meteorological prediction to better predict river flows. However, the structure of the hydrological model is also an important source of uncertainty that has to be taken into account. This study aims at evaluating and comparing the performance and the reliability of different types of hydrological ensemble prediction systems (H-EPS), when ensemble weather forecasts are combined with a multi-model approach. The study is based on 29 catchments in France and 16 lumped hydrological model structures, driven by the weather forecasts from the European centre for medium-range weather forecasts (ECMWF). Results show that the ensemble predictions produced by a combination of several hydrological model structures and meteorological ensembles have higher skill and reliability than ensemble predictions given either by one single hydrological model fed by weather ensemble predictions or by several hydrological models and a deterministic meteorological forecast.


2011 ◽  
Vol 8 (2) ◽  
pp. 2739-2782 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. Hydrological Ensemble Prediction System (HEPS), obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS), have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of members) of a HEPS configured with 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Center for Medium-range Weather Forecasts (ECMWF). Here, the selection of the most relevant members is proposed using a Backward greedy technique with k-fold cross-validation, allowing an optimal use of the information. The methodology draws from a multi-criterion score that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS) or the maximization of the relationship between the different scores (performance).


2016 ◽  
Vol 31 (6) ◽  
pp. 1833-1851 ◽  
Author(s):  
Inger-Lise Frogner ◽  
Thomas Nipen ◽  
Andrew Singleton ◽  
John Bjørnar Bremnes ◽  
Ole Vignes

Abstract Three ensemble prediction systems (EPSs) with different grid spacings are compared and evaluated with respect to their ability to predict wintertime weather in complex terrain. The experiment period was two-and-a-half winter months in 2014, coinciding with the Forecast and Research in the Olympic Sochi Testbed (FROST) project, which took place during the Winter Olympic Games in Sochi, Russia. The global, synoptic-scale ensemble system used is the IFS ENS from the European Centre for Medium-Range Weather Forecasts (ECMWF), and its performance is compared with both the operational pan-European Grand Limited Area Ensemble Prediction System (GLAMEPS) at 11-km horizontal resolution and the experimental regional convection-permitting HIRLAM–ALADIN Regional Mesoscale Operational NWP in Europe (HARMONIE) EPS (HarmonEPS) at 2.5 km. Both GLAMEPS and HarmonEPS are multimodel systems, and it is seen that a large part of the skill in these systems comes from the multimodel approach, as long as all subensembles are performing reasonably. The number of members has less impact on the overall skill measurement. The relative importance of resolution and calibration is also assessed. Statistical calibration was applied and evaluated. In contrast to what is seen for the raw ensembles, the number of members, as well as the number of subensembles, is important for the calibrated ensembles. HarmonEPS shows greater potential than GLAMEPS for predicting wintertime weather, and also has an advantage after calibration.


2005 ◽  
Vol 133 (5) ◽  
pp. 1076-1097 ◽  
Author(s):  
Roberto Buizza ◽  
P. L. Houtekamer ◽  
Gerald Pellerin ◽  
Zoltan Toth ◽  
Yuejian Zhu ◽  
...  

Abstract The present paper summarizes the methodologies used at the European Centre for Medium-Range Weather Forecasts (ECMWF), the Meteorological Service of Canada (MSC), and the National Centers for Environmental Prediction (NCEP) to simulate the effect of initial and model uncertainties in ensemble forecasting. The characteristics of the three systems are compared for a 3-month period between May and July 2002. The main conclusions of the study are the following:the performance of ensemble prediction systems strongly depends on the quality of the data assimilation system used to create the unperturbed (best) initial condition and the numerical model used to generate the forecasts;a successful ensemble prediction system should simulate the effect of both initial and model-related uncertainties on forecast errors; andfor all three global systems, the spread of ensemble forecasts is insufficient to systematically capture reality, suggesting that none of them is able to simulate all sources of forecast uncertainty.The relative strengths and weaknesses of the three systems identified in this study can offer guidelines for the future development of ensemble forecasting techniques.


2014 ◽  
Vol 142 (11) ◽  
pp. 4074-4090 ◽  
Author(s):  
Jessica Keune ◽  
Christian Ohlwein ◽  
Andreas Hense

Abstract Ensemble weather forecasting has been operational for two decades now. However, the related uncertainty analysis in terms of probabilistic postprocessing still focuses on single variables, grid points, or stations. Inevitable dependencies in space and time and between variables are often ignored. To address this problem, two probabilistic postprocessing methods are presented, which are multivariate versions of Gaussian fit and kernel dressing, respectively. The multivariate case requires the estimation of a full rank, invertible covariance matrix. For this purpose, a Graphical Least Absolute Shrinkage and Selection Operators (GLASSO) estimator has been employed that is based on sparse undirected graphical models regularized by an L1 penalty term in order to parameterize the full rank inverse covariance. In all cases, the result is a multidimensional probability density. The forecasts used to test the approach are station forecasts of 2-m temperature and surface pressure from four main global ensemble prediction systems (EPS) with medium-range weather forecasts: the NCEP Global Ensemble Forecast System (GEFS), the Met Office Global and Regional Ensemble Prediction System (MOGREPS), the Canadian Meteorological Centre (CMC) Global Ensemble Prediction System (GEPS), and the ECMWF EPS. To evaluate the multivariate probabilistic postprocessing, especially the uncertainty estimates, common verification methods such as the analysis rank histogram and the continuous ranked probability score (CRPS) are applied. Furthermore, a multivariate extension of the CRPS, the energy score, allows for the verification of a complete medium-range forecast as well as for determining its predictability. It is shown that the predictability is similar for all of the examined ensemble prediction systems, whereas the GLASSO proved to be a useful tool for calibrating the commonly observed underdispersion of ensemble forecasts during the first few lead days by using information from the full covariance matrix.


2015 ◽  
Vol 8 (7) ◽  
pp. 2355-2377 ◽  
Author(s):  
M. Rautenhaus ◽  
C. M. Grams ◽  
A. Schäfler ◽  
R. Westermann

Abstract. We present the application of interactive three-dimensional (3-D) visualization of ensemble weather predictions to forecasting warm conveyor belt situations during aircraft-based atmospheric research campaigns. Motivated by forecast requirements of the T-NAWDEX-Falcon 2012 (THORPEX – North Atlantic Waveguide and Downstream Impact Experiment) campaign, a method to predict 3-D probabilities of the spatial occurrence of warm conveyor belts (WCBs) has been developed. Probabilities are derived from Lagrangian particle trajectories computed on the forecast wind fields of the European Centre for Medium Range Weather Forecasts (ECMWF) ensemble prediction system. Integration of the method into the 3-D ensemble visualization tool Met.3D, introduced in the first part of this study, facilitates interactive visualization of WCB features and derived probabilities in the context of the ECMWF ensemble forecast. We investigate the sensitivity of the method with respect to trajectory seeding and grid spacing of the forecast wind field. Furthermore, we propose a visual analysis method to quantitatively analyse the contribution of ensemble members to a probability region and, thus, to assist the forecaster in interpreting the obtained probabilities. A case study, revisiting a forecast case from T-NAWDEX-Falcon, illustrates the practical application of Met.3D and demonstrates the use of 3-D and uncertainty visualization for weather forecasting and for planning flight routes in the medium forecast range (3 to 7 days before take-off).


2011 ◽  
Vol 26 (5) ◽  
pp. 664-676 ◽  
Author(s):  
Thierry Dupont ◽  
Matthieu Plu ◽  
Philippe Caroff ◽  
Ghislain Faure

Abstract Several tropical cyclone forecasting centers issue uncertainty information with regard to their official track forecasts, generally using the climatological distribution of position error. However, such methods are not able to convey information that depends on the situation. The purpose of the present study is to assess the skill of the Ensemble Prediction System (EPS) from the European Centre for Medium-Range Weather Forecasts (ECMWF) at measuring the uncertainty of up to 3-day track forecasts issued by the Regional Specialized Meteorological Centre (RSMC) La Réunion in the southwestern Indian Ocean. The dispersion of cyclone positions in the EPS is extracted and translated at the RSMC forecast position. The verification relies on existing methods for probabilistic forecasts that are presently adapted to a cyclone-position metric. First, the probability distribution of forecast positions is compared to the climatological distribution using Brier scores. The probabilistic forecasts have better scores than the climatology, particularly after applying a simple calibration scheme. Second, uncertainty circles are built by fixing the probability at 75%. Their skill at detecting small and large error values is assessed. The circles have some skill for large errors up to the 3-day forecast (and maybe after); but the detection of small radii is skillful only up to 2-day forecasts. The applied methodology may be used to assess and to compare the skill of different probabilistic forecasting systems of cyclone position.


2011 ◽  
Vol 139 (10) ◽  
pp. 3243-3247 ◽  
Author(s):  
Thomas M. Hamill ◽  
Jeffrey S. Whitaker ◽  
Daryl T. Kleist ◽  
Michael Fiorino ◽  
Stanley G. Benjamin

Abstract Experimental ensemble predictions of tropical cyclone (TC) tracks from the ensemble Kalman filter (EnKF) using the Global Forecast System (GFS) model were recently validated for the 2009 Northern Hemisphere hurricane season by Hamill et al. A similar suite of tests is described here for the 2010 season. Two major changes were made this season: 1) a reduction in the resolution of the GFS model, from 2009’s T384L64 (~31 km at 25°N) to 2010’s T254L64 (~47 km at 25°N), and some changes in model physics; and 2) the addition of a limited test of deterministic forecasts initialized from a hybrid three-dimensional variational data assimilation (3D-Var)/EnKF method. The GFS/EnKF ensembles continued to produce reduced track errors relative to operational ensemble forecasts created by the National Centers for Environmental Prediction (NCEP), the Met Office (UKMO), and the Canadian Meteorological Centre (CMC). The GFS/EnKF was not uniformly as skillful as the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble prediction system. GFS/EnKF track forecasts had slightly higher error than ECMWF at longer leads, especially in the western North Pacific, and exhibited poorer calibration between spread and error than in 2009, perhaps in part because of lower model resolution. Deterministic forecasts from the hybrid were competitive with deterministic EnKF ensemble-mean forecasts and superior in track error to those initialized from the operational variational algorithm, the Gridpoint Statistical Interpolation (GSI). Pending further successful testing, the National Oceanic and Atmospheric Administration (NOAA) intends to implement the global hybrid system operationally for data assimilation.


Sign in / Sign up

Export Citation Format

Share Document