scholarly journals Multivariate Probabilistic Analysis and Predictability of Medium-Range Ensemble Weather Forecasts

2014 ◽  
Vol 142 (11) ◽  
pp. 4074-4090 ◽  
Author(s):  
Jessica Keune ◽  
Christian Ohlwein ◽  
Andreas Hense

Abstract Ensemble weather forecasting has been operational for two decades now. However, the related uncertainty analysis in terms of probabilistic postprocessing still focuses on single variables, grid points, or stations. Inevitable dependencies in space and time and between variables are often ignored. To address this problem, two probabilistic postprocessing methods are presented, which are multivariate versions of Gaussian fit and kernel dressing, respectively. The multivariate case requires the estimation of a full rank, invertible covariance matrix. For this purpose, a Graphical Least Absolute Shrinkage and Selection Operators (GLASSO) estimator has been employed that is based on sparse undirected graphical models regularized by an L1 penalty term in order to parameterize the full rank inverse covariance. In all cases, the result is a multidimensional probability density. The forecasts used to test the approach are station forecasts of 2-m temperature and surface pressure from four main global ensemble prediction systems (EPS) with medium-range weather forecasts: the NCEP Global Ensemble Forecast System (GEFS), the Met Office Global and Regional Ensemble Prediction System (MOGREPS), the Canadian Meteorological Centre (CMC) Global Ensemble Prediction System (GEPS), and the ECMWF EPS. To evaluate the multivariate probabilistic postprocessing, especially the uncertainty estimates, common verification methods such as the analysis rank histogram and the continuous ranked probability score (CRPS) are applied. Furthermore, a multivariate extension of the CRPS, the energy score, allows for the verification of a complete medium-range forecast as well as for determining its predictability. It is shown that the predictability is similar for all of the examined ensemble prediction systems, whereas the GLASSO proved to be a useful tool for calibrating the commonly observed underdispersion of ensemble forecasts during the first few lead days by using information from the full covariance matrix.

2011 ◽  
Vol 8 (2) ◽  
pp. 2739-2782 ◽  
Author(s):  
D. Brochero ◽  
F. Anctil ◽  
C. Gagné

Abstract. Hydrological Ensemble Prediction System (HEPS), obtained by forcing rainfall-runoff models with Meteorological Ensemble Prediction Systems (MEPS), have been recognized as useful approaches to quantify uncertainties of hydrological forecasting systems. This task is complex both in terms of the coupling of information and computational time, which may create an operational barrier. The main objective of the current work is to assess the degree of simplification (reduction of members) of a HEPS configured with 16 lumped hydrological models driven by the 50 weather ensemble forecasts from the European Center for Medium-range Weather Forecasts (ECMWF). Here, the selection of the most relevant members is proposed using a Backward greedy technique with k-fold cross-validation, allowing an optimal use of the information. The methodology draws from a multi-criterion score that represents the combination of resolution, reliability, consistency, and diversity. Results show that the degree of reduction of members can be established in terms of maximum number of members required (complexity of the HEPS) or the maximization of the relationship between the different scores (performance).


2007 ◽  
Vol 11 (2) ◽  
pp. 725-737 ◽  
Author(s):  
E. Roulin

Abstract. A hydrological ensemble prediction system, integrating a water balance model with ensemble precipitation forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS), is evaluated for two Belgian catchments using verification methods borrowed from meteorology. The skill of the probability forecast that the streamflow exceeds a given level is measured with the Brier Skill Score. Then the value of the system is assessed using a cost-loss decision model. The verification results of the hydrological ensemble predictions are compared with the corresponding results obtained for simpler alternatives as the one obtained by using of the deterministic forecast of ECMWF which is characterized by a higher spatial resolution or by using of the EPS ensemble mean.


2016 ◽  
Vol 31 (6) ◽  
pp. 1833-1851 ◽  
Author(s):  
Inger-Lise Frogner ◽  
Thomas Nipen ◽  
Andrew Singleton ◽  
John Bjørnar Bremnes ◽  
Ole Vignes

Abstract Three ensemble prediction systems (EPSs) with different grid spacings are compared and evaluated with respect to their ability to predict wintertime weather in complex terrain. The experiment period was two-and-a-half winter months in 2014, coinciding with the Forecast and Research in the Olympic Sochi Testbed (FROST) project, which took place during the Winter Olympic Games in Sochi, Russia. The global, synoptic-scale ensemble system used is the IFS ENS from the European Centre for Medium-Range Weather Forecasts (ECMWF), and its performance is compared with both the operational pan-European Grand Limited Area Ensemble Prediction System (GLAMEPS) at 11-km horizontal resolution and the experimental regional convection-permitting HIRLAM–ALADIN Regional Mesoscale Operational NWP in Europe (HARMONIE) EPS (HarmonEPS) at 2.5 km. Both GLAMEPS and HarmonEPS are multimodel systems, and it is seen that a large part of the skill in these systems comes from the multimodel approach, as long as all subensembles are performing reasonably. The number of members has less impact on the overall skill measurement. The relative importance of resolution and calibration is also assessed. Statistical calibration was applied and evaluated. In contrast to what is seen for the raw ensembles, the number of members, as well as the number of subensembles, is important for the calibrated ensembles. HarmonEPS shows greater potential than GLAMEPS for predicting wintertime weather, and also has an advantage after calibration.


2020 ◽  
Vol 20 (8) ◽  
pp. 2365-2378
Author(s):  
Francesca Di Giuseppe ◽  
Claudia Vitolo ◽  
Blazej Krzeminski ◽  
Christopher Barnard ◽  
Pedro Maciel ◽  
...  

Abstract. In the framework of the EU Copernicus programme, the European Centre for Medium-Range Weather Forecasts (ECMWF) on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium-range ensemble prediction system. The use of weather forecasts in place of local observations can extend early warnings by up to 1–2 weeks, allowing for greater proactive coordination of resource-sharing and mobilization within and across countries. Using 1 year of pre-operational service in 2017 and the Fire Weather Index (FWI), here we assess the capability of the system globally and analyse in detail three major events in Chile, Portugal and California. The analysis shows that the skill provided by the ensemble forecast system extends to more than 10 d when compared to the use of mean climate, making a case for extending the forecast range to the sub-seasonal to seasonal timescale. However, accurate FWI prediction does not translate into accuracy in the forecast of fire activity globally. Indeed, when all fires detected in 2017 are considered, including agricultural- and human-induced burning, high FWI values only occur in 50 % of the cases and are limited to the Boreal regions. Nevertheless for very large events which were driven by weather conditions, FWI forecasts provide advance warning that could be instrumental in setting up management and containment strategies.


2006 ◽  
Vol 3 (4) ◽  
pp. 1369-1406 ◽  
Author(s):  
E. Roulin

Abstract. A hydrological ensemble prediction system, integrating a water balance model with ensemble precipitation forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS), is evaluated for two Belgian catchments using verification methods borrowed from meteorology. The skill of the probability forecast that the streamflow exceeds a given level is measured with the Brier Skill Score. Then the value of the system is assessed using a cost-loss decision model. The verification results of the hydrological ensemble predictions are compared with the corresponding results obtained for simpler alternatives as the one obtained by using of the deterministic forecast of ECMWF which is characterized by a higher spatial resolution or by using of the EPS ensemble mean.


2005 ◽  
Vol 6 (5) ◽  
pp. 729-744 ◽  
Author(s):  
Emmanuel Roulin ◽  
Stéphane Vannitsem

Abstract A hydrological ensemble prediction system, integrating a water balance model with ensemble precipitation forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS), is evaluated for two Belgian catchments. The skill of streamflow forecast for high flows is analyzed using a 6-yr period of archived EPS forecasts. The probabilistic skill of this hydrological prediction system is much better than the one based on historical precipitation inputs and extends beyond 9 days for both catchments. The skill is larger in winter than in summer. The use of this approach for operational forecasts is briefly discussed.


2011 ◽  
Vol 26 (5) ◽  
pp. 664-676 ◽  
Author(s):  
Thierry Dupont ◽  
Matthieu Plu ◽  
Philippe Caroff ◽  
Ghislain Faure

Abstract Several tropical cyclone forecasting centers issue uncertainty information with regard to their official track forecasts, generally using the climatological distribution of position error. However, such methods are not able to convey information that depends on the situation. The purpose of the present study is to assess the skill of the Ensemble Prediction System (EPS) from the European Centre for Medium-Range Weather Forecasts (ECMWF) at measuring the uncertainty of up to 3-day track forecasts issued by the Regional Specialized Meteorological Centre (RSMC) La Réunion in the southwestern Indian Ocean. The dispersion of cyclone positions in the EPS is extracted and translated at the RSMC forecast position. The verification relies on existing methods for probabilistic forecasts that are presently adapted to a cyclone-position metric. First, the probability distribution of forecast positions is compared to the climatological distribution using Brier scores. The probabilistic forecasts have better scores than the climatology, particularly after applying a simple calibration scheme. Second, uncertainty circles are built by fixing the probability at 75%. Their skill at detecting small and large error values is assessed. The circles have some skill for large errors up to the 3-day forecast (and maybe after); but the detection of small radii is skillful only up to 2-day forecasts. The applied methodology may be used to assess and to compare the skill of different probabilistic forecasting systems of cyclone position.


2020 ◽  
Author(s):  
Francesca Di Giuseppe ◽  
Claudia Vitolo ◽  
Blazej Krzeminski ◽  
Jesús San-Miguel

Abstract. In the framework of the EU Copernicus program, the European Centre for Medium-range Weather Forecast (ECMWF) on behalf of the Joint Research Centre (JRC) is forecasting daily fire weather indices using its medium range ensemble prediction system. The use of weather forecast in place of local observations can extend early warnings up to 1–2 weeks allowing for greater proactive coordination of resource-sharing and mobilization within and across countries. Using one year of pre-operational service in 2017 and the fire weather index (FWI) here we assess the capability of the system globally and analyze in detail three major events in Chile, Portugal and California. The analysis shows that the skill provided by the ensemble forecast system extends to more than 10 days when compared to the use of mean climate making a case of extending the forecast range to the sub-seasonal to seasonal time scale. However accurate FWI prediction does not translate into accuracy in the forecast of fire activity globally. Indeed when all 2017 detected fires are considered, including agricultural and human induced burning, high FWI values only occurs in 50 % of the cases and only in Boreal regions. Nevertheless for very important events mostly driven by weather condition, FWI forecast provides advance warning that could be instrumental in setting up management strategies.


2005 ◽  
Vol 133 (7) ◽  
pp. 1825-1839 ◽  
Author(s):  
A. Arribas ◽  
K. B. Robertson ◽  
K. R. Mylne

Abstract Current operational ensemble prediction systems (EPSs) are designed specifically for medium-range forecasting, but there is also considerable interest in predictability in the short range, particularly for potential severe-weather developments. A possible option is to use a poor man’s ensemble prediction system (PEPS) comprising output from different numerical weather prediction (NWP) centers. By making use of a range of different models and independent analyses, a PEPS provides essentially a random sampling of both the initial condition and model evolution errors. In this paper the authors investigate the ability of a PEPS using up to 14 models from nine operational NWP centers. The ensemble forecasts are verified for a 101-day period and five variables: mean sea level pressure, 500-hPa geopotential height, temperature at 850 hPa, 2-m temperature, and 10-m wind speed. Results are compared with the operational ECMWF EPS, using the ECMWF analysis as the verifying “truth.” It is shown that, despite its smaller size, PEPS is an efficient way of producing ensemble forecasts and can provide competitive performance in the short range. The best relative performance is found to come from hybrid configurations combining output from a small subset of the ECMWF EPS with other different NWP models.


Sign in / Sign up

Export Citation Format

Share Document