extreme precipitation indices
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 53)

H-INDEX

16
(FIVE YEARS 5)

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1522
Author(s):  
Xiaoxia Yang ◽  
Juan Wu ◽  
Jia Liu ◽  
Xuchun Ye

In this study, 11 extreme precipitation indices were selected to examine the spatiotemporal variation of extreme precipitation in the Poyang Lake Basin during 1960–2017. The responses of extreme precipitation indices to El Nino/Southern Oscillation (ENSO) events of different Pacific Ocean areas were further investigated. The results show that the temperature in the Poyang Lake Basin has increased significantly since the 1990s, and the inter-decadal precipitation fluctuated. Most extreme precipitation indices showed an increasing trend with abrupt changes occurring around 1991. Spatially, most of the extreme precipitation indices decreased from northeast to southwest. The increasing trend of most indices in the center and south of the basin was relatively prominent. The linear correlations between the extreme precipitation indices and Nino 1 + 2 were the most significant. On the timescale of 2–6 years, a common oscillation period between the extreme precipitation of the basin and the four ENSO indices can be observed. After 2010, the positive correlation between the precipitation of the Poyang Lake Basin and the SST (sea surface temperature) anomalies in the equatorial Pacific increased significantly. Additionally, annual total wet–day precipitation in most areas of the Poyang Lake Basin increased with varying degrees in warm ENSO years. The results of this study will improve the understanding of the complex background and driving mechanism of flood disasters in the Poyang Lake Basin.


Climate ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 160
Author(s):  
Ezéchiel Obada ◽  
Eric Adechina Alamou ◽  
Eliezer Iboukoun Biao ◽  
Esdras B. Josué Zandagba

Observed rainfall data (1961–2016) were used to analyze variability, trends and changes of extreme precipitation indices over Benin. Nine indices out of the ones developed by the Expert Team on Climate Change Detection and Indices (ETCCDI) were used. The results indicate a mix of downward and upward trends for maximum 1-day precipitation (RX1day) and maximum 5-days precipitation (RX5day). Decrease trends are observed for annual total precipitation of wet days (P), while significant increases are found for the simple daily intensity index (SDII). The number of wet days (RR1) and maximum consecutive dry days (CDD) show a mix of increase/decrease trends. However, the number of heavy (R10) and very heavy (R20) wet days and maximum consecutive wet days (CWD) show decreased trends. All wet indices increased over 1991–2010 in relation to 1971–1990. The increase in all wet indices over Benin could explain the intensification of hydrology, and the increase in the frequency and the intensity of floods. It caused damages such as soil erosion, crop destruction, livestock destruction, displacement of populations, proliferation of waterborne diseases and loss of human life. Some adaptive strategies are suggested to mitigate the impacts of changes in extreme rainfall.


Water ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 2848
Author(s):  
Wenfeng Hu ◽  
Junqiang Yao ◽  
Qing He ◽  
Jing Chen

The Tibetan Plateau (TP) are regions that are most sensitive to climate change, especially extreme precipitation changes with elevation, may increase the risk of natural disasters and have attracted attention for the study of extreme events in order to identify adaptive actions. Based on daily observed data from 113 meteorological stations in the Tibetan Plateau and the surrounding regions in China during 1971–2017, we calculated the annual total precipitation and extreme precipitation indices using the R ClimDex software package and explored elevation-dependent precipitation trends. The results demonstrate that the annual total precipitation increased at a rate of 6.7 mm/decade, and the contribution of extreme precipitation to total precipitation increased over time, and the climate extremes were enhanced. The annual total, seasonal precipitation, and precipitation extreme trends were observed in terms of elevation dependence in the Tibetan Plateau (TP) and the surrounding area of the Tibetan Plateau (TPS) during 1971–2017. There is growing evidence that the elevation-dependent wetting (EDWE) is complex over the TP. The trends in total precipitation have a strong dependence on elevation, and the EDWE is highlighted by the extreme precipitation indices, for example, the number of heavy precipitation days (R10) and consecutive wet days (CWD). The dependence of extreme precipitation on elevation is heterogeneous, as other extreme indices do not indicate EDWE. These findings highlight the precipitation complexity in the TP. The findings of this study will be helpful for improving our understanding of variabilities in precipitation and extreme precipitation in response to climate change and will provide support for water resource management and disaster prevention in plateaus and mountain ranges.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1136
Author(s):  
Wenbo Yan ◽  
Yunling He ◽  
Ya Cai ◽  
Xilin Cui ◽  
Xinxing Qu

Global warming is increasing the frequency and intensity of extreme weather events around the world. The extreme climate in plateau and mountainous areas is sensitive and fragile. Based on the software Rclimdex 1.0, the spatio-temporal variation characteristics of 27 extreme climate indices at 120 meteorological stations were calculated in Yunnan from 1960 to 2019. The results show that the extreme temperature is rising, and the warming rate at night is higher than that in the daytime. It showed a trend of warming and drying, and precipitation was concentrated into more intense bursts. Extreme temperature cold indices (TX10p, TN10p, FD0, ID0, and CSDI) were negatively correlated with extreme precipitation indices (R × 5day, PRCPTOT, R10 mm, R20 mm, and R25 mm). Extreme temperature warmth indices (TX90p and TN90p) were positively correlated with extreme precipitation indices (R × 5day, CWD, PRCPTOT, R10 mm, R20 mm, and R25 mm). The change rate of extreme temperature does not increase linearly with altitude. The increase in middle-altitude and high-altitude areas is higher than that in low-altitude areas. Compared with ENSO and AO, NAO is a vital circulation pattern affecting the extreme climate in Yunnan. The influence of NAO on Yunnan’s extreme climate indices is most significant in the current month and the second month that follows. NAO was negatively correlated with extreme temperature warm indices (TN90p, TX90p, SU25, and TR20). NAO positively correlates with the extreme cold temperature indices (TN10p and TX10p). Except that ENSO has a significant effect on CDD, the effect of the general circulation patterns on the extreme temperature indices was more significant than that on the extreme precipitation indices in Yunnan. The results of this study are helpful to further understand and predict the characteristics of extreme climatic events and the factors affecting their geographical locations and atmospheric circulation patterns in Yunnan.


2021 ◽  
pp. 1-63
Author(s):  
Bin Tang ◽  
Wenting Hu ◽  
Anmin Duan

AbstractA future projection of four extreme precipitation indices over the Indochina Peninsula and South China (INCSC) region with reference to the period 1958–2014 is conducted through the application of multimodel ensemble approach and rank-based weighting method. The weight of each model from phase 6 of the Coupled Model Intercomparison Project (CMIP6) is calculated depending on its historical simulation skill. Then, the weighted and unweighted ensembles are used for future projections. The results show that all four extreme precipitation indices are expected to increase over the INCSC region, both in the middle (2041–2060) and at the end (2081–2100) of the 21st century, under three Shared Socioeconomic Pathway (SSP) scenarios. The increases in total extreme precipitation (R95p), extreme precipitation days (R95d), and the fraction of total rainfall from events exceeding the extreme precipitation threshold (R95pT) in the Indochina Peninsula are more significant than those in South China. The occurrence of extreme rainfall events may become more frequent in the future over the INCSC region, since the probability that R95pT increases is larger than 0.7 in the whole INCSC region. A comparison between the weighted and unweighted ensemble means shows that the uncertainty over South China is almost always reduced after applying the weighted scheme to future probabilistic projection, while the reductions in uncertainty over the Indochina Peninsula may depend on SSPs. The more extreme precipitation over the INCSC region in the future may be related to the larger water vapor supply and the more unstable local atmospheric stratification.


Author(s):  
Mohammed Braimah ◽  
Vincent Antwi Asante ◽  
Maureen Ahiataku ◽  
Samuel Owusu Ansah ◽  
Frederick Otu-Larbi ◽  
...  

Rainfall variability has resulted in extreme events like devastating floods and droughts which is the main cause of human vulnerability to precipitation in West Africa. Attempts have been made by previous studies to understand rainfall variability over Ghana but these have mostly focused on the major rainy season of April-July, leaving a gap in our understanding of the variability in the September-November season which is a very important aspect of the Ghanaian climate system. The current study seeks to close this knowledge gap by employing statistical tools to quantify variabilities in rainfall amounts, rain days, and extreme precipitation indices in the minor rainfall season over Ghana. We find extremely high variability in rainfall with a Coefficient of variation (CV) between 25.3% and 70.8%, and moderate to high variability in rain days (CV=14.0% - 48.8%). Rainfall amount was found to be higher over the middle sector (262.7 mm – 400.2 mm) but lowest over the east coast (125.2 mm – 181.8 mm). Analysis of the second rainfall season using the Mankandell Test presents a non-significant trend of rainfall amount and extreme indices (R10, R20, R99p, and R99p) for many places in southern Ghana. Rainfall Anomaly Indices show that the middle sector recorded above normal precipitation which is the opposite for areas in the transition zone. The result of this work provides a good understanding of rainfall in the minor rainfall season and may be used for planning purposes.


2021 ◽  
Vol 13 (15) ◽  
pp. 3010
Author(s):  
Qingshan He ◽  
Jianping Yang ◽  
Hongju Chen ◽  
Jun Liu ◽  
Qin Ji ◽  
...  

Accurate estimates of extreme precipitation events play an important role in climate change studies and natural disaster risk assessments. This study aimed to evaluate the capability of the China Meteorological Forcing Dataset (CMFD), Asian Precipitation-Highly Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), and Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) to detect the spatiotemporal patterns of extreme precipitation events over the Qinghai-Tibet Plateau (QTP) in China, from 1981 to 2014. Compared to the gauge-based precipitation dataset obtained from 101 stations across the region, 12 indices of extreme precipitation were employed and classified into three categories: fixed threshold, station-related threshold, and non-threshold indices. Correlation coefficient (CC), root mean square error (RMSE), mean absolute error (MAE), and Kling–Gupta efficiency (KGE), were used to assess the accuracy of extreme precipitation estimation; indices including probability of detection (POD), false alarm ratio (FAR), and critical success index (CSI) were adopted to evaluate the ability of gridded products’ to detect rain occurrences. The results indicated that all three gridded datasets showed acceptable representation of the extreme precipitation events over the QTP. CMFD and APHRODITE tended to slightly underestimate extreme precipitation indices (except for consecutive wet days), whereas CHIRPS overestimated most indices. Overall, CMFD outperformed the other datasets for capturing the spatiotemporal pattern of most extreme precipitation indices over the QTP. Although CHIRPS had lower levels of accuracy, the generated data had a higher spatial resolution, and with correction, it may be considered for small-scale studies in future research.


2021 ◽  
Author(s):  
Shakti Suryavanshi ◽  
Nitin Joshi ◽  
Hardeep Kumar Maurya ◽  
Divya Gupta ◽  
Keshav Kumar Sharma

Abstract This study examines the pattern and trend of seasonal and annual precipitation along with extreme precipitation events in a data scare, south Asian country, Afghanistan. Seven extreme precipitation indices were considered based upon intensity, duration and frequency of precipitation events. The study revealed that precipitation pattern of Afghanistan is unevenly distributed at seasonal and yearly scales. Southern and Southwestern provinces remain significantly dry whereas, the Northern and Northeastern provinces receive comparatively higher precipitation. Spring and winter seasons bring about 80% of yearly precipitation in Afghanistan. However, a notable declining precipitation trend was observed in these two seasons. An increasing trend in precipitation was observed for the summer and autumn seasons, however; these seasons are the lean periods for precipitation. A declining annual precipitation trend was also revealed in many provinces of Afghanistan. Analysis of extreme precipitation indices reveals a general drier condition in Afghanistan. Large spatial variability was found in precipitation indices. In many provinces of Afghanistan, a significantly declining trends were observed in intensity-based (Rx1-day, RX5-day, SDII and R95p) and frequency-based (R10) precipitation indices. The duration-based precipitation indices (CDD and CWD) also infer a general drier climatic condition in Afghanistan. This study will assist the agriculture and allied sectors to take well-planned adaptive measures in dealing with the changing patterns of precipitation, and additionally, facilitating future studies for Afghanistan.


Sign in / Sign up

Export Citation Format

Share Document