scholarly journals FEATURE-EXTRACTION FROM ALL-SCALE NEIGHBORHOODS WITH APPLICATIONS TO SEMANTIC SEGMENTATION OF POINT CLOUDS

Author(s):  
A. Leichter ◽  
M. Werner ◽  
M. Sester

Abstract. Feature extraction from a range of scales is crucial for successful classification of objects of different size in 3D point clouds with varying point density. 3D point clouds have high relevance in application areas such as terrain modelling, building modelling or autonomous driving. A large amount of such data is available but also that these data is subject to investigation in the context of different tasks like segmentation, classification, simultaneous localisation and mapping and others. In this paper, we introduce a novel multiscale approach to recover neighbourhood in unstructured 3D point clouds. Unlike the typical strategy of defining one single scale for the whole dataset or use a single optimised scale for every point, we consider an interval of scales. In this initial work our primary goal is to evaluate the information gain through the usage of the multiscale neighbourhood definition for the calculation of shape features, which are used for point classification. Therefore, we show and discuss empirical results from the application of classical classification models to multiscale features. The unstructured nature of 3D point cloud makes it necessary to recover neighbourhood information before meaningful features can be extracted. This paper proposes the extraction of geometrical features from a range of neighbourhood with different scales, i.e. neighborhood ranges. We investigate the utilisation of the large set of features in combination with feature aggregation/selection algorithms and classical machine learning techniques. We show that the all-scale-approach outperform single scale approaches as well as the approach with an optimised per point selected scale.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4329 ◽  
Author(s):  
Guorong Cai ◽  
Zuning Jiang ◽  
Zongyue Wang ◽  
Shangfeng Huang ◽  
Kai Chen ◽  
...  

Semantic segmentation of 3D point clouds plays a vital role in autonomous driving, 3D maps, and smart cities, etc. Recent work such as PointSIFT shows that spatial structure information can improve the performance of semantic segmentation. Motivated by this phenomenon, we propose Spatial Aggregation Net (SAN) for point cloud semantic segmentation. SAN is based on multi-directional convolution scheme that utilizes the spatial structure information of point cloud. Firstly, Octant-Search is employed to capture the neighboring points around each sampled point. Secondly, we use multi-directional convolution to extract information from different directions of sampled points. Finally, max-pooling is used to aggregate information from different directions. The experimental results conducted on ScanNet database show that the proposed SAN has comparable results with state-of-the-art algorithms such as PointNet, PointNet++, and PointSIFT, etc. In particular, our method has better performance on flat, small objects, and the edge areas that connect objects. Moreover, our model has good trade-off in segmentation accuracy and time complexity.


Author(s):  
Desire Mulindwa Burume ◽  
Shengzhi Du

Beyond semantic segmentation,3D instance segmentation(a process to delineate objects of interest and also classifying the objects into a set of categories) is gaining more and more interest among researchers since numerous computer vision applications need accurate segmentation processes(autonomous driving, indoor navigation, and even virtual or augmented reality systems…) This paper gives an overview and a technical comparison of the existing deep learning architectures in handling unstructured Euclidean data for the rapidly developing 3D instance segmentation. First, the authors divide the 3D point clouds based instance segmentation techniques into two major categories which are proposal based methods and proposal free methods. Then, they also introduce and compare the most used datasets with regard to 3D instance segmentation. Furthermore, they compare and analyze these techniques performance (speed, accuracy, response to noise…). Finally, this paper provides a review of the possible future directions of deep learning for 3D sensor-based information and provides insight into the most promising areas for prospective research.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1205
Author(s):  
Zhiyu Wang ◽  
Li Wang ◽  
Bin Dai

Object detection in 3D point clouds is still a challenging task in autonomous driving. Due to the inherent occlusion and density changes of the point cloud, the data distribution of the same object will change dramatically. Especially, the incomplete data with sparsity or occlusion can not represent the complete characteristics of the object. In this paper, we proposed a novel strong–weak feature alignment algorithm between complete and incomplete objects for 3D object detection, which explores the correlations within the data. It is an end-to-end adaptive network that does not require additional data and can be easily applied to other object detection networks. Through a complete object feature extractor, we achieve a robust feature representation of the object. It serves as a guarding feature to help the incomplete object feature generator to generate effective features. The strong–weak feature alignment algorithm reduces the gap between different states of the same object and enhances the ability to represent the incomplete object. The proposed adaptation framework is validated on the KITTI object benchmark and gets about 6% improvement in detection average precision on 3D moderate difficulty compared to the basic model. The results show that our adaptation method improves the detection performance of incomplete 3D objects.


2021 ◽  
Vol 13 (15) ◽  
pp. 3021
Author(s):  
Bufan Zhao ◽  
Xianghong Hua ◽  
Kegen Yu ◽  
Xiaoxing He ◽  
Weixing Xue ◽  
...  

Urban object segmentation and classification tasks are critical data processing steps in scene understanding, intelligent vehicles and 3D high-precision maps. Semantic segmentation of 3D point clouds is the foundational step in object recognition. To identify the intersecting objects and improve the accuracy of classification, this paper proposes a segment-based classification method for 3D point clouds. This method firstly divides points into multi-scale supervoxels and groups them by proposed inverse node graph (IN-Graph) construction, which does not need to define prior information about the node, it divides supervoxels by judging the connection state of edges between them. This method reaches minimum global energy by graph cutting, obtains the structural segments as completely as possible, and retains boundaries at the same time. Then, the random forest classifier is utilized for supervised classification. To deal with the mislabeling of scattered fragments, higher-order CRF with small-label cluster optimization is proposed to refine the classification results. Experiments were carried out on mobile laser scan (MLS) point dataset and terrestrial laser scan (TLS) points dataset, and the results show that overall accuracies of 97.57% and 96.39% were obtained in the two datasets. The boundaries of objects were retained well, and the method achieved a good result in the classification of cars and motorcycles. More experimental analyses have verified the advantages of the proposed method and proved the practicability and versatility of the method.


Author(s):  
M. Kölle ◽  
V. Walter ◽  
S. Schmohl ◽  
U. Soergel

Abstract. Automated semantic interpretation of 3D point clouds is crucial for many tasks in the domain of geospatial data analysis. For this purpose, labeled training data is required, which has often to be provided manually by experts. One approach to minimize effort in terms of costs of human interaction is Active Learning (AL). The aim is to process only the subset of an unlabeled dataset that is particularly helpful with respect to class separation. Here a machine identifies informative instances which are then labeled by humans, thereby increasing the performance of the machine. In order to completely avoid involvement of an expert, this time-consuming annotation can be resolved via crowdsourcing. Therefore, we propose an approach combining AL with paid crowdsourcing. Although incorporating human interaction, our method can run fully automatically, so that only an unlabeled dataset and a fixed financial budget for the payment of the crowdworkers need to be provided. We conduct multiple iteration steps of the AL process on the ISPRS Vaihingen 3D Semantic Labeling benchmark dataset (V3D) and especially evaluate the performance of the crowd when labeling 3D points. We prove our concept by using labels derived from our crowd-based AL method for classifying the test dataset. The analysis outlines that by labeling only 0:4% of the training dataset by the crowd and spending less than 145 $, both our trained Random Forest and sparse 3D CNN classifier differ in Overall Accuracy by less than 3 percentage points compared to the same classifiers trained on the complete V3D training set.


Author(s):  
Yasuhiro Yao ◽  
Katie Xu ◽  
Kazuhiko Murasaki ◽  
Shingo Ando ◽  
Atsushi Sagata

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3568 ◽  
Author(s):  
Takayuki Shinohara ◽  
Haoyi Xiu ◽  
Masashi Matsuoka

In the computer vision field, many 3D deep learning models that directly manage 3D point clouds (proposed after PointNet) have been published. Moreover, deep learning-based-techniques have demonstrated state-of-the-art performance for supervised learning tasks on 3D point cloud data, such as classification and segmentation tasks for open datasets in competitions. Furthermore, many researchers have attempted to apply these deep learning-based techniques to 3D point clouds observed by aerial laser scanners (ALSs). However, most of these studies were developed for 3D point clouds without radiometric information. In this paper, we investigate the possibility of using a deep learning method to solve the semantic segmentation task of airborne full-waveform light detection and ranging (lidar) data that consists of geometric information and radiometric waveform data. Thus, we propose a data-driven semantic segmentation model called the full-waveform network (FWNet), which handles the waveform of full-waveform lidar data without any conversion process, such as projection onto a 2D grid or calculating handcrafted features. Our FWNet is based on a PointNet-based architecture, which can extract the local and global features of each input waveform data, along with its corresponding geographical coordinates. Subsequently, the classifier consists of 1D convolutional operational layers, which predict the class vector corresponding to the input waveform from the extracted local and global features. Our trained FWNet achieved higher scores in its recall, precision, and F1 score for unseen test data—higher scores than those of previously proposed methods in full-waveform lidar data analysis domain. Specifically, our FWNet achieved a mean recall of 0.73, a mean precision of 0.81, and a mean F1 score of 0.76. We further performed an ablation study, that is assessing the effectiveness of our proposed method, of the above-mentioned metric. Moreover, we investigated the effectiveness of our PointNet based local and global feature extraction method using the visualization of the feature vector. In this way, we have shown that our network for local and global feature extraction allows training with semantic segmentation without requiring expert knowledge on full-waveform lidar data or translation into 2D images or voxels.


2020 ◽  
Vol 9 (9) ◽  
pp. 535
Author(s):  
Francesca Matrone ◽  
Eleonora Grilli ◽  
Massimo Martini ◽  
Marina Paolanti ◽  
Roberto Pierdicca ◽  
...  

In recent years semantic segmentation of 3D point clouds has been an argument that involves different fields of application. Cultural heritage scenarios have become the subject of this study mainly thanks to the development of photogrammetry and laser scanning techniques. Classification algorithms based on machine and deep learning methods allow to process huge amounts of data as 3D point clouds. In this context, the aim of this paper is to make a comparison between machine and deep learning methods for large 3D cultural heritage classification. Then, considering the best performances of both techniques, it proposes an architecture named DGCNN-Mod+3Dfeat that combines the positive aspects and advantages of these two methodologies for semantic segmentation of cultural heritage point clouds. To demonstrate the validity of our idea, several experiments from the ArCH benchmark are reported and commented.


Sign in / Sign up

Export Citation Format

Share Document