scholarly journals MAPPING COASTAL AND WETLAND VEGETATION COMMUNITIES USING MULTI-TEMPORAL SENTINEL-2 DATA

Author(s):  
P. Villa ◽  
C. Giardino ◽  
S. Mantovani ◽  
D. Tapete ◽  
A. Vecoli ◽  
...  

Abstract. Operational monitoring of complex vegetation communities, such as the ones growing in coastal and wetland areas, can be effectively supported by satellite remote sensing, providing quantitative spatialized information on vegetation parameters, as well as on their temporal evolution. With this work, we explored and evaluated the potential of Sentinel-2 data for assessing the status and evolution of coastal vegetation as the primary indicator of ecosystem conditions, by mapping the different plant communities of Venice lagoon (Northeast Italy) via a rule-based classification approach exploiting synoptic seasonal features of spectral indices and multispectral reflectance. The results demonstrated that coastal and wetland vegetation community type maps derived for two different years scored a good overall accuracy around 80%, with some misclassification in the coastal areas and overestimation of salt marsh communities coverage, and that virtual collaborative environments can facilitate the use of Sentinel-2 data and products to multidisciplinary users.

2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.


2021 ◽  
Vol 13 (15) ◽  
pp. 2983
Author(s):  
Alberto López-Amoedo ◽  
Xana Álvarez ◽  
Henrique Lorenzo ◽  
Juan Luis Rodríguez

Land fragmentation and small plots are the main features of the rural environment of Galicia (NW Spain). Smallholding limits land use management, representing a drawback in local forest planning. This study analyzes the potential use of multitemporal Sentinel-2 images to detect and control forest cuts in very small pine and eucalyptus plots located in southern Galicia. The proposed approach is based on the analysis of Sentinel-2 NDVI time series in 4231 plots smaller than 3 ha (average 0.46 ha). The methodology allowed us to detect cuts, allocate cut dates and quantify plot areas due to different cutting cycles in an uneven-aged stand. An accuracy of approximately 95% was achieved when the whole plot was cut, with an 81% accuracy for partial cuts. The main difficulty in detecting and dating cuts was related to cloud cover, which affected the multitemporal analysis. In conclusion, the proposed methodology provides an accurate estimation of cutting date and area, helping to improve the monitoring system in sustainable forest certifications to ensure compliance with forest management plans.


2021 ◽  
pp. 777
Author(s):  
Andi Tenri Waru ◽  
Athar Abdurrahman Bayanuddin ◽  
Ferman Setia Nugroho ◽  
Nita Rukminasari

Pulau Tanakeke merupakan salah satu pulau dengan hutan mangrove yang luas di pesisir Sulawesi Selatan. Hutan mangrove ini menjadi ekosistem penting bagi masyarakat sekitar karena nilai ekologi maupun ekonominya. Namun, dalam kurun waktu sekitar tahun 1980-2000, keberadaan mangrove tersebut terancam oleh perubahan penggunaan lahan dan juga pemanfaatan yang berlebihan. Penelitian ini bertujuan untuk menganalisis perubahan temporal luas dan tingkat kerapatan hutan mangrove di Pulau Tanakeke antara tahun 2016 dan 2019. Metode analisis perubahan luasan hutan mangrove menggunakan data citra satelit Sentinel-2 multi temporal berdasarkan hasil klasifikasi hutan mangrove dengan menggunakan random forest pada platform Google Earth Engine. Akurasi keseluruhan hasil klasifikasi hutan mangrove tahun 2016 dan 2019 sebesar 91% dan 98%. Berdasarkan hasil analisis spasial diperoleh perubahan penurunan luasan mangrove yang signifikan dari 800,21 ha menjadi 640,15 ha. Kerapatan mangrove di Pulau Tanakeke sebagian besar tergolong kategori dalam kerapatan tinggi.


2019 ◽  
Vol 231 ◽  
pp. 111254 ◽  
Author(s):  
David P. Roy ◽  
Haiyan Huang ◽  
Luigi Boschetti ◽  
Louis Giglio ◽  
Lin Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document