scholarly journals Comparison of Multi-Temporal PlanetScope Data with Landsat 8 and Sentinel-2 Data for Estimating Airborne LiDAR Derived Canopy Height in Temperate Forests

2020 ◽  
Vol 12 (11) ◽  
pp. 1876 ◽  
Author(s):  
Katsuto Shimizu ◽  
Tetsuji Ota ◽  
Nobuya Mizoue ◽  
Hideki Saito

Developing accurate methods for estimating forest structures is essential for efficient forest management. The high spatial and temporal resolution data acquired by CubeSat satellites have desirable characteristics for mapping large-scale forest structural attributes. However, most studies have used a median composite or single image for analyses. The multi-temporal use of CubeSat data may improve prediction accuracy. This study evaluates the capabilities of PlanetScope CubeSat data to estimate canopy height derived from airborne Light Detection and Ranging (LiDAR) by comparing estimates using Sentinel-2 and Landsat 8 data. Random forest (RF) models using a single composite, multi-seasonal composites, and time-series data were investigated at different spatial resolutions of 3, 10, 20, and 30 m. The highest prediction accuracy was obtained by the PlanetScope multi-seasonal composites at 3 m (relative root mean squared error: 51.3%) and Sentinel-2 multi-seasonal composites at the other spatial resolutions (40.5%, 35.2%, and 34.2% for 10, 20, and 30 m, respectively). The results show that RF models using multi-seasonal composites are 1.4% more accurate than those using harmonic metrics from time-series data in the median. PlanetScope is recommended for canopy height mapping at finer spatial resolutions. However, the unique characteristics of PlanetScope data in a spatial and temporal context should be further investigated for operational forest monitoring.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2236 ◽  
Author(s):  
Viviana Gavilán ◽  
Mario Lillo-Saavedra ◽  
Eduardo Holzapfel ◽  
Diego Rivera ◽  
Angel García-Pedrero

Efficient water management in agriculture requires a precise estimate of evapotranspiration ( E T ). Although local measurements can be used to estimate surface energy balance components, these values cannot be extrapolated to large areas due to the heterogeneity and complexity of agriculture environment. This extrapolation can be done using satellite images that provide information in visible and thermal infrared region of the electromagnetic spectrum; however, most current satellite sensors do not provide this end, but they do include a set of spectral bands that allow the radiometric behavior of vegetation that is highly correlated with the E T . In this context, our working hypothesis states that it is possible to generate a strategy of integration and harmonization of the Normalized Difference Vegetation Index ( N D V I ) obtained from Landsat-8 ( L 8 ) and Sentinel-2 ( S 2 ) sensors in order to obtain an N D V I time series used to estimate E T through fit equations specific to each crop type during an agricultural season (December 2017–March 2018). Based on the obtained results it was concluded that it is possible to estimate E T using an N D V I time series by integrating data from both sensors L 8 and S 2 , which allowed to carry out an updated seasonal water balance over study site, improving the irrigation water management both at plot and water distribution system scale.


2021 ◽  
Author(s):  
Tiziana L. Koch ◽  
Marius Rüetschi ◽  
Lars T. Waser

<p>Sentinel-2 time series provide large amounts of data and information which can be easily used to classify tree species with machine learning algorithms. In addition to the original Sentinel-2 bands, further data such as indices, phenological metrics or even synthetical images can be derived. While tree species classifications highly benefit from such additional data resulting in improved prediction accuracy, severe drawbacks have to be considered - For large data sets, large storage is needed, the computation time expands and a linkage to ecological or phenological reasons behind the usage of these variables can hardly be drawn. Therefore, the implemented variables should be limited to the ones, which are meaningful and on the same time providing the best prediction accuracy. To identify meaningful variables from original Sentinel-2 images and the additionally calculated data first we used basic correlation analyses and subsequently feature selection methods in combination with the commonly used Random Forest algorithm. We classified the most common forest tree species in the Swiss canton of Grisons, which is mountainous and characterized by diverse landscapes. The presented approach will lead to higher efficiency for classifying tree species and additionally provides potential conclusions regarding ecological patterns beyond the distinction of tree species by remote sensing data. Moreover, the proposed approach can also be used to improve classifications or predictions of other outcome variables for vegetated areas with Sentinel-2.</p>


2020 ◽  
Vol 12 (18) ◽  
pp. 3068 ◽  
Author(s):  
Marta Prada ◽  
Carlos Cabo ◽  
Rocío Hernández-Clemente ◽  
Alberto Hornero ◽  
Juan Majada ◽  
...  

Forest management treatments often translate into changes in forest structure. Understanding and assessing how forests react to these changes is key for forest managers to develop and follow sustainable practices. A strategy to remotely monitor the development of the canopy after thinning using satellite imagery time-series data is presented. The aim was to identify optimal remote sensing Vegetation Indices (VIs) to use as time-sensitive indicators of the early response of vegetation after the thinning of sweet chestnut (Castanea Sativa Mill.) coppice. For this, the changes produced at the canopy level by different thinning treatments and their evolution over time (2014–2019) were extracted from VI values corresponding to two trials involving 33 circular plots (r = 10 m). Plots were subjected to one of the following forest management treatments: Control with no intervention (2800–3300 stems ha−1), Treatment 1, one thinning leaving a living stock density of 900–600 stems ha−1 and Treatment 2, a more intensive thinning, leaving 400 stems ha−1. Time series data from Landsat-8 and Sentinel-2 were collected to calculate values for different VIs. Canopy development was computed by comparing the area under curves (AUCs) of different VI time-series annually throughout the study period. Soil-Line VIs were compared to the Normalized Vegetation Index (NDVI) revealing that the Second Modified Chlorophyll Absorption Ratio Index (MCARI2) more clearly demonstrated canopy evolution tendencies over time than the NDVI. MCARI2 data from both L8 and S2 reflected how the influence of treatment on the canopy cover decreases over the years, providing significant differences in the thinning year and the year after. Metrics derived from the MCARI2 time-series also demonstrated the capacity of the canopy to recovery to pretreatment coverage levels. The AUC method generates a specific V-shaped time-signature, the vertex of which coincides with the thinning event and, as such, provides forest managers with another tool to assist decision making in the development of sustainable forest management strategies.


2018 ◽  
Vol 10 (8) ◽  
pp. 1286 ◽  
Author(s):  
Viktoriya Tsyganskaya ◽  
Sandro Martinis ◽  
Philip Marzahn ◽  
Ralf Ludwig

The C-band Sentinel-1 satellite constellation enables the continuous monitoring of the Earth’s surface within short revisit times. Thus, it provides Synthetic Aperture Radar (SAR) time series data that can be used to detect changes over time regardless of daylight or weather conditions. Within this study, a time series classification approach is developed for the extraction of the flood extent with a focus on temporary flooded vegetation (TFV). This method is based on Sentinel-1 data, as well as auxiliary land cover information, and combines a pixel-based and an object-oriented approach. Multi-temporal characteristics and patterns are applied to generate novel times series features, which represent a basis for the developed approach. The method is tested on a study area in Namibia characterized by a large flood event in April 2017. Sentinel-1 times series were used for the period between September 2016 and July 2017. It is shown that the supplement of TFV areas to the temporary open water areas prevents the underestimation of the flood area, allowing the derivation of the entire flood extent. Furthermore, a quantitative evaluation of the generated flood mask was carried out using optical Sentinel-2 images, whereby it was shown that overall accuracy increased by 27% after the inclusion of the TFV.


2019 ◽  
Vol 11 (14) ◽  
pp. 1683 ◽  
Author(s):  
Yangchengsi Zhang ◽  
Long Guo ◽  
Yiyun Chen ◽  
Tiezhu Shi ◽  
Mei Luo ◽  
...  

High-precision maps of soil organic carbon (SOC) are beneficial for managing soil fertility and understanding the global carbon cycle. Digital soil mapping plays an important role in efficiently obtaining the spatial distribution of SOC, which contributes to precision agriculture. However, traditional soil-forming factors (i.e., terrain or climatic factors) have weak variability in low-relief areas, such as plains, and cannot reflect the spatial variation of soil attributes. Meanwhile, vegetation cover hinders the acquisition of the direct information of farmland soil. Thus, useful environmental variables should be utilized for SOC prediction and the digital mapping of such areas. SOC has an important effect on crop growth status, and remote sensing data can record the apparent spectral characteristics of crops. The normalized difference vegetation index (NDVI) is an important index reflecting crop growth and biomass. This study used NDVI time series data rather than traditional soil-forming factors to map SOC. Honghu City, located in the middle of the Jianghan Plain, was selected as the study region, and the NDVI time series data extracted from Landsat 8 were used as the auxiliary variables. SOC maps were estimated through stepwise linear regression (SLR), partial least squares regression (PLSR), support vector machine (SVM), and artificial neural network (ANN). Ordinary kriging (OK) was used as the reference model, while root mean square error of prediction (RMSEP) and coefficient of determination of prediction (R2P) were used to evaluate the model performance. Results showed that SOC had a significant positive correlation in July and August (0.17, 0.29) and a significant negative correlation in January, April, and December (−0.23, −0.27, and −0.23) with NDVI time series data. The best model for SOC prediction was generated by ANN, with the lowest RMSEP of 3.718 and highest R2P of 0.391, followed by SVM (RMSEP = 3.753, R2P = 0.361) and PLSR (RMSEP = 4.087, R2P = 0.283). The SLR model was the worst model, with the lowest R2P of 0.281 and highest RMSEP of 3.930. ANN and SVM were better than OK (RMSEP = 3.727, R2P = 0.372), whereas PLSR and SLR were worse than OK. Moreover, the prediction results using single-data NDVI or short time series NDVI showed low accuracy. The effect of the terrain factor on SOC prediction represented unsatisfactory results. All these results indicated that the NDVI time series data can be used for SOC mapping in plain areas and that the ANN model can maximally extract additional associated information between NDVI time series data and SOC. This study presented an effective method to overcome the selection of auxiliary variables for digital soil mapping in plain areas when the soil was covered with vegetation. This finding indicated that the time series characteristics of NDVI were conducive for predicting SOC in plains.


2020 ◽  
Vol 12 (19) ◽  
pp. 3120
Author(s):  
Luojia Hu ◽  
Nan Xu ◽  
Jian Liang ◽  
Zhichao Li ◽  
Luzhen Chen ◽  
...  

A high resolution mangrove map (e.g., 10-m), including mangrove patches with small size, is urgently needed for mangrove protection and ecosystem function estimation, because more small mangrove patches have disappeared with influence of human disturbance and sea-level rise. However, recent national-scale mangrove forest maps are mainly derived from 30-m Landsat imagery, and their spatial resolution is relatively coarse to accurately characterize the extent of mangroves, especially those with small size. Now, Sentinel imagery with 10-m resolution provides an opportunity for generating high-resolution mangrove maps containing these small mangrove patches. Here, we used spectral/backscatter-temporal variability metrics (quantiles) derived from Sentinel-1 SAR (Synthetic Aperture Radar) and/or Sentinel-2 MSI (Multispectral Instrument) time-series imagery as input features of random forest to classify mangroves in China. We found that Sentinel-2 (F1-Score of 0.895) is more effective than Sentinel-1 (F1-score of 0.88) in mangrove extraction, and a combination of SAR and MSI imagery can get the best accuracy (F1-score of 0.94). The 10-m mangrove map was derived by combining SAR and MSI data, which identified 20003 ha mangroves in China, and the area of small mangrove patches (<1 ha) is 1741 ha, occupying 8.7% of the whole mangrove area. At the province level, Guangdong has the largest area (819 ha) of small mangrove patches, and in Fujian, the percentage of small mangrove patches is the highest (11.4%). A comparison with existing 30-m mangrove products showed noticeable disagreement, indicating the necessity for generating mangrove extent product with 10-m resolution. This study demonstrates the significant potential of using Sentinel-1 and Sentinel-2 images to produce an accurate and high-resolution mangrove forest map with Google Earth Engine (GEE). The mangrove forest map is expected to provide critical information to conservation managers, scientists, and other stakeholders in monitoring the dynamics of the mangrove forest.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 612
Author(s):  
Helin Yin ◽  
Dong Jin ◽  
Yeong Hyeon Gu ◽  
Chang Jin Park ◽  
Sang Keun Han ◽  
...  

It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have strong non-linear and non-stationary characteristics. To address these issues, we propose the STL-ATTLSTM (STL-Attention-based LSTM) model, which integrates the seasonal trend decomposition using the Loess (STL) preprocessing method and attention mechanism based on long short-term memory (LSTM). The proposed STL-ATTLSTM forecasts monthly vegetable prices using various types of information, such as vegetable prices, weather information of the main production areas, and market trading volumes. The STL method decomposes time-series vegetable price data into trend, seasonality, and remainder components. It uses the remainder component by removing the trend and seasonality components. In the model training process, attention weights are assigned to all input variables; thus, the model’s prediction performance is improved by focusing on the variables that affect the prediction results. The proposed STL-ATTLSTM was applied to five crops, namely cabbage, radish, onion, hot pepper, and garlic, and its performance was compared to three benchmark models (i.e., LSTM, attention LSTM, and STL-LSTM). The performance results show that the LSTM model combined with the STL method (STL-LSTM) achieved a 12% higher prediction accuracy than the attention LSTM model that did not use the STL method and solved the prediction lag arising from high seasonality. The attention LSTM model improved the prediction accuracy by approximately 4% to 5% compared to the LSTM model. The STL-ATTLSTM model achieved the best performance, with an average root mean square error (RMSE) of 380, and an average mean absolute percentage error (MAPE) of 7%.


2019 ◽  
Author(s):  
A. Kozlova ◽  
I. Piestova ◽  
L. Patrusheva ◽  
M. Lubsky ◽  
A. Nikulina ◽  
...  

2019 ◽  
Vol 11 (21) ◽  
pp. 2515 ◽  
Author(s):  
Ana Navarro ◽  
Joao Catalao ◽  
Joao Calvao

In Portugal, cork oak (Quercus suber L.) stands cover 737 Mha, being the most predominant species of the montado agroforestry system, contributing to the economic, social and environmental development of the country. Cork oak decline is a known problem since the late years of the 19th century that has recently worsened. The causes of oak decline seem to be a result of slow and cumulative processes, although the role of each environmental factor is not yet established. The availability of Sentinel-2 high spatial and temporal resolution dense time series enables monitoring of gradual processes. These processes can be monitored using spectral vegetation indices (VI) as their temporal dynamics are expected to be related with green biomass and photosynthetic efficiency. The Normalized Difference Vegetation Index (NDVI) is sensitive to structural canopy changes, however it tends to saturate at moderate-to-dense canopies. Modified VI have been proposed to incorporate the reflectance in the red-edge spectral region, which is highly sensitive to chlorophyll content while largely unaffected by structural properties. In this research, in situ data on the location and vitality status of cork oak trees are used to assess the correlation between chlorophyll indices (CI) and NDVI time series trends and cork oak vitality at the tree level. Preliminary results seem to be promising since differences between healthy and unhealthy (diseased/dead) trees were observed.


Sign in / Sign up

Export Citation Format

Share Document