scholarly journals Scalable and Detail-Preserving Ground Surface Reconstruction from Large 3D Point Clouds Acquired by Mobile Mapping Systems

Author(s):  
D. Craciun ◽  
A. Serna Morales ◽  
J.-E. Deschaud ◽  
B. Marcotegui ◽  
F. Goulette

The currently existing mobile mapping systems equipped with active 3D sensors allow to acquire the environment with high sampling rates at high vehicle velocities. While providing an effective solution for environment sensing over large scale distances, such acquisition provides only a discrete representation of the geometry. Thus, a continuous map of the underlying surface must be built. Mobile acquisition introduces several constraints for the state-of-the-art surface reconstruction algorithms. Smoothing becomes a difficult task for recovering sharp depth features while avoiding mesh shrinkage. In addition, interpolation-based techniques are not suitable for noisy datasets acquired by Mobile Laser Scanning (MLS) systems. Furthermore, scalability is a major concern for enabling real-time rendering over large scale distances while preserving geometric details. This paper presents a fully automatic ground surface reconstruction framework capable to deal with the aforementioned constraints. The proposed method exploits the quasi-flat geometry of the ground throughout a morphological segmentation algorithm. Then, a planar Delaunay triangulation is applied in order to reconstruct the ground surface. A smoothing procedure eliminates high frequency peaks, while preserving geometric details in order to provide a regular ground surface. Finally, a decimation step is applied in order to cope with scalability constraints over large scale distances. Experimental results on real data acquired in large urban environments are presented and a performance evaluation with respect to ground truth measurements demonstrate the effectiveness of our method.

2020 ◽  
Vol 12 (3) ◽  
pp. 401 ◽  
Author(s):  
Ravi ◽  
Habib

LiDAR-based mobile mapping systems (MMS) are rapidly gaining popularity for a multitude of applications due to their ability to provide complete and accurate 3D point clouds for any and every scene of interest. However, an accurate calibration technique for such systems is needed in order to unleash their full potential. In this paper, we propose a fully automated profile-based strategy for the calibration of LiDAR-based MMS. The proposed technique is validated by comparing its accuracy against the expected point positioning accuracy for the point cloud based on the used sensors’ specifications. The proposed strategy was seen to reduce the misalignment between different tracks from approximately 2 to 3 m before calibration down to less than 2 cm after calibration for airborne as well as terrestrial mobile LiDAR mapping systems. In other words, the proposed calibration strategy can converge to correct estimates of mounting parameters, even in cases where the initial estimates are significantly different from the true values. Furthermore, the results from the proposed strategy are also verified by comparing them to those from an existing manually-assisted feature-based calibration strategy. The major contribution of the proposed strategy is its ability to conduct the calibration of airborne and wheel-based mobile systems without any requirement for specially designed targets or features in the surrounding environment. The above claims are validated using experimental results conducted for three different MMS – two airborne and one terrestrial – with one or more LiDAR unit.


Author(s):  
H. Salgues ◽  
H. Macher ◽  
T. Landes

Abstract. With their high recording rate of hundreds of thousands of points acquired per second, speed of execution and a remote acquisition mode, SLAM based mobile mapping systems (MMS) are a very powerful solution for capturing 3D point clouds in real time, simply by walking in the area of interest. Regarding indoor surveys, these MMS have been integrated in handheld or backpack solutions and become fast scanning sensors. Despite their advantages, the geometric accuracy of 3D point clouds guaranteed with these sensors is lower than the one reachable with static TLS. In this paper the effectiveness of two recent mobile mapping systems namely the GeoSLAM ZEB-REVO RT and the more recent GreenValley LiBackPack C50 is investigated for indoor surveys. In order to perform a reliable assessment study, several datasets produced with each sensor are compared to the high-cost georeferenced point cloud obtained with static laser scanning target-based technique.


2021 ◽  
Vol 15 (3) ◽  
pp. 258-267
Author(s):  
Hiroki Matsumoto ◽  
◽  
Yuma Mori ◽  
Hiroshi Masuda

Mobile mapping systems can capture point clouds and digital images of roadside objects. Such data are useful for maintenance, asset management, and 3D map creation. In this paper, we discuss methods for extracting guardrails that separate roadways and walkways. Since there are various shape patterns for guardrails in Japan, flexible methods are required for extracting them. We propose a new extraction method based on point processing and a convolutional neural network (CNN). In our method, point clouds and images are segmented into small fragments, and their features are extracted using CNNs for images and point clouds. Then, features from images and point clouds are combined and investigated using whether they are guardrails or not. Based on our experiments, our method could extract guardrails from point clouds with a high success rate.


Author(s):  
M. Corongiu ◽  
A. Masiero ◽  
G. Tucci

Abstract. Nowadays, mobile mapping systems are widely used to quickly collect reliable geospatial information of relatively large areas: thanks to such characteristics, the number of applications and fields exploiting their usage is continuously increasing. Among such possible applications, mobile mapping systems have been recently considered also by railway system managers to quickly produce and update a database of the geospatial features of such system, also called assets. Despite several vehicles, devices and acquisition methods can be considered for the data collection of the railway system, the predominant one is probably that based on the use of a mobile mapping system mounted on a train, which moves all along the railway tracks, enabling the 3D reproduction of the entire railway track area.Given the large amount of data collected by such mobile mapping, automatic procedures have to be used to speed up the process of extracting the spatial information of interest, i.e. assets positions and characteristics.This paper considers the problem of extracting such information for what concerns cantilever and portal masts, by exploiting a mixed approach. First, a set of candidate areas are extracted and pre-processed by considering certain of their geometric characteristics, mainly extracted by using eigenvalues of the covariance matrix of a point neighborhood. Then, a 3D modified Fisher vector-deep learning neural net is used to classify the candidates. Tests on such approach are conducted in two areas of the Italian railway system.


Author(s):  
H. Jing ◽  
N. Slatcher ◽  
X. Meng ◽  
G. Hunter

Mobile mapping systems are becoming increasingly popular as they can build 3D models of the environment rapidly by using a laser scanner that is integrated with a navigation system. 3D mobile mapping has been widely used for applications such as 3D city modelling and mapping of the scanned environments. However, accurate mapping relies on not only the scanner’s performance but also on the quality of the navigation results (accuracy and robustness) . This paper discusses the potentials of using 3D mobile mapping systems for landscape change detection, that is traditionally carried out by terrestrial laser scanners that can be accurately geo-referenced at a static location to produce highly accurate dense point clouds. Yet compared to conventional surveying using terrestrial laser scanners, several advantages of mobile mapping systems can be identified. A large area can be monitored in a relatively short period, which enables high repeat frequency monitoring without having to set-up dedicated stations. However, current mobile mapping applications are limited by the quality of navigation results, especially in different environments. The change detection ability of mobile mapping systems is therefore significantly affected by the quality of the navigation results. This paper presents some data collected for the purpose of monitoring from a mobile platform. The datasets are analysed to address current potentials and difficulties. The change detection results are also presented based on the collected dataset. Results indicate the potentials of change detection using a mobile mapping system and suggestions to enhance quality and robustness.


2021 ◽  
Vol 13 (2) ◽  
pp. 237
Author(s):  
Norbert Pfeifer ◽  
Johannes Falkner ◽  
Andreas Bayr ◽  
Lothar Eysn ◽  
Camillo Ressl

Mobile mapping is in the process of becoming a routinely applied standard tool to support administration of cities. For ensuring the usability of the mobile mapping data it is necessary to have a practical method to evaluate the quality of different systems, which reaches beyond 3D accuracy of individual points. Such a method must be objective, easy to implement, and provide quantitative results to be used in tendering processes. We present such an approach which extracts quality figures for point density, point distribution, point cloud planarity, image resolution, and street sign legibility. In its practical application for the mobile mapping campaign of the City of Vienna (Austria) in 2020 the proposed test method proved to fulfill the above requirements. As an additional result, quality figures are reported for the panorama images and point clouds of three different mobile mapping systems.


Author(s):  
T. Lovas ◽  
K. Hadzijanisz ◽  
V. Papp ◽  
A. J. Somogyi

Abstract. There are multiple emerging technologies, devices and integrated equipment to support indoor mapping. The two main categories are the wearable/portable (e.g. hand-held or backpack devices) and the trolley based devices. The most widely used sensors of the integrated systems are the laser scanners (usually profile scanners), camera(s) and the IMU unit. Compared to outdoor mobile mapping systems the main difference is the lack of GNSS signals; localization is usually supported by SLAM (Simultaneous Localization and Mapping) technology, using Kalman-filtering. Current paper discusses the assessment of the potential of trolley-based indoor mobile mapping systems (MMS) by surveying a building part by multiple technologies. Besides conventional land surveying measurements, terrestrial lasers scanning and a backpack-based mobile survey have been carried out. The analysis included cloud-to-cloud comparison as well as CAD-based evaluation focusing on the geometric accuracy of the point clouds. The paper also presents the surveying workflow; on its resource-needs and potential application fields. The paper discusses the data acquisition technologies and procedures and the different quality assessment methods and results. Since an experimental survey was conducted with a backpack-based unit in the same study area, the paper gives a brief overview on how the two different mobile mapping technologies can be applied indoor, and presents the main differences, advantages and drawbacks.


Sign in / Sign up

Export Citation Format

Share Document