scholarly journals SUBTROPICAL FOREST BIOMASS ESTIMATION USING AIRBORNE LiDAR AND HYPERSPECTRAL DATA

Author(s):  
Yong Pang ◽  
Zengyuan Li

Forests have complex vertical structure and spatial mosaic pattern. Subtropical forest ecosystem consists of vast vegetation species and these species are always in a dynamic succession stages. It is very challenging to characterize the complexity of subtropical forest ecosystem. In this paper, CAF’s (The Chinese Academy of Forestry) LiCHy (LiDAR, CCD and Hyperspectral) Airborne Observation System was used to collect waveform Lidar and hyperspectral data in Puer forest region, Yunnan province in the Southwest of China. The study site contains typical subtropical species of coniferous forest, evergreen broadleaf forest, and some other mixed forests. The hypersectral images were orthorectified and corrected into surface reflectance with support of Lidar DTM product. The fusion of Lidar and hyperspectral can classify dominate forest types. The lidar metrics improved the classification accuracy. Then forest biomass estimation was carried out for each dominate forest types using waveform Lidar data, which get improved than single Lidar data source.

Author(s):  
Yong Pang ◽  
Zengyuan Li

Forests have complex vertical structure and spatial mosaic pattern. Subtropical forest ecosystem consists of vast vegetation species and these species are always in a dynamic succession stages. It is very challenging to characterize the complexity of subtropical forest ecosystem. In this paper, CAF’s (The Chinese Academy of Forestry) LiCHy (LiDAR, CCD and Hyperspectral) Airborne Observation System was used to collect waveform Lidar and hyperspectral data in Puer forest region, Yunnan province in the Southwest of China. The study site contains typical subtropical species of coniferous forest, evergreen broadleaf forest, and some other mixed forests. The hypersectral images were orthorectified and corrected into surface reflectance with support of Lidar DTM product. The fusion of Lidar and hyperspectral can classify dominate forest types. The lidar metrics improved the classification accuracy. Then forest biomass estimation was carried out for each dominate forest types using waveform Lidar data, which get improved than single Lidar data source.


2020 ◽  
Vol 12 (7) ◽  
pp. 1101 ◽  
Author(s):  
Xiandie Jiang ◽  
Guiying Li ◽  
Dengsheng Lu ◽  
Erxue Chen ◽  
Xinliang Wei

Species-rich subtropical forests have high carbon sequestration capacity and play important roles in regional and global carbon regulation and climate changes. A timely investigation of the spatial distribution characteristics of subtropical forest aboveground biomass (AGB) is essential to assess forest carbon stocks. Lidar (light detection and ranging) is regarded as the most reliable data source for accurate estimation of forest AGB. However, previous studies that have used lidar data have often beenbased on a single model developed from the relationships between lidar-derived variables and AGB, ignoring the variability of this relationship in different forest types. Although stratification of forest types has been proven to be effective for improving AGB estimation, how to stratify forest types and how many strata to use are still unclear. This research aims to improve forest AGB estimation through exploring suitable stratification approaches based on lidar and field survey data. Different stratification schemes including non-stratification and stratifications based on forest types and forest stand structures were examined. The AGB estimation models were developed using linear regression (LR) and random forest (RF) approaches. The results indicate the following: (1) Proper stratifications improved AGB estimation and reduced the effect of under- and overestimation problems; (2) the finer forest type strata generated higher accuracy of AGB estimation but required many more sample plots, which were often unavailable; (3) AGB estimation based on stratification of forest stand structures was similar to that based on five forest types, implying that proper stratification reduces the number of sample plots needed; (4) the optimal AGB estimation model and stratification scheme varied, depending on forest types; and (5) the RF algorithm provided better AGB estimation for non-stratification than the LR algorithm, but the LR approach provided better estimation with stratification. Results from this research provide new insights on how to properly conduct forest stratification for AGB estimation modeling, which is especially valuable in tropical and subtropical regions with complex forest types.


2017 ◽  
Vol 73 ◽  
pp. 378-387 ◽  
Author(s):  
Shezhou Luo ◽  
Cheng Wang ◽  
Xiaohuan Xi ◽  
Feifei Pan ◽  
Dailiang Peng ◽  
...  

2019 ◽  
Vol 232 ◽  
pp. 111283 ◽  
Author(s):  
Wenlu Qi ◽  
Svetlana Saarela ◽  
John Armston ◽  
Göran Ståhl ◽  
Ralph Dubayah

2021 ◽  
Vol 13 (4) ◽  
pp. 559
Author(s):  
Milto Miltiadou ◽  
Neill D. F. Campbell ◽  
Darren Cosker ◽  
Michael G. Grant

In this paper, we investigate the performance of six data structures for managing voxelised full-waveform airborne LiDAR data during 3D polygonal model creation. While full-waveform LiDAR data has been available for over a decade, extraction of peak points is the most widely used approach of interpreting them. The increased information stored within the waveform data makes interpretation and handling difficult. It is, therefore, important to research which data structures are more appropriate for storing and interpreting the data. In this paper, we investigate the performance of six data structures while voxelising and interpreting full-waveform LiDAR data for 3D polygonal model creation. The data structures are tested in terms of time efficiency and memory consumption during run-time and are the following: (1) 1D-Array that guarantees coherent memory allocation, (2) Voxel Hashing, which uses a hash table for storing the intensity values (3) Octree (4) Integral Volumes that allows finding the sum of any cuboid area in constant time, (5) Octree Max/Min, which is an upgraded octree and (6) Integral Octree, which is proposed here and it is an attempt to combine the benefits of octrees and Integral Volumes. In this paper, it is shown that Integral Volumes is the more time efficient data structure but it requires the most memory allocation. Furthermore, 1D-Array and Integral Volumes require the allocation of coherent space in memory including the empty voxels, while Voxel Hashing and the octree related data structures do not require to allocate memory for empty voxels. These data structures, therefore, and as shown in the test conducted, allocate less memory. To sum up, there is a need to investigate how the LiDAR data are stored in memory. Each tested data structure has different benefits and downsides; therefore, each application should be examined individually.


2017 ◽  
Vol 07 (02) ◽  
pp. 255-269 ◽  
Author(s):  
Faith Kagwiria Mutwiri ◽  
Patroba Achola Odera ◽  
Mwangi James Kinyanjui

2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Dengsheng Lu ◽  
Qi Chen ◽  
Guangxing Wang ◽  
Emilio Moran ◽  
Mateus Batistella ◽  
...  

Landsat Thematic mapper (TM) image has long been the dominate data source, and recently LiDAR has offered an important new structural data stream for forest biomass estimations. On the other hand, forest biomass uncertainty analysis research has only recently obtained sufficient attention due to the difficulty in collecting reference data. This paper provides a brief overview of current forest biomass estimation methods using both TM and LiDAR data. A case study is then presented that demonstrates the forest biomass estimation methods and uncertainty analysis. Results indicate that Landsat TM data can provide adequate biomass estimates for secondary succession but are not suitable for mature forest biomass estimates due to data saturation problems. LiDAR can overcome TM’s shortcoming providing better biomass estimation performance but has not been extensively applied in practice due to data availability constraints. The uncertainty analysis indicates that various sources affect the performance of forest biomass/carbon estimation. With that said, the clear dominate sources of uncertainty are the variation of input sample plot data and data saturation problem related to optical sensors. A possible solution to increasing the confidence in forest biomass estimates is to integrate the strengths of multisensor data.


Sign in / Sign up

Export Citation Format

Share Document