scholarly journals Smart in-cylinder pressure sensor for closed-loop combustion control

2022 ◽  
Vol 11 (1) ◽  
pp. 1-13
Author(s):  
Dennis Vollberg ◽  
Peter Gibson ◽  
Günter Schultes ◽  
Hans-Werner Groh ◽  
Thomas Heinze

Abstract. Our approach of a closed-loop combustion control is built on an intensively evaluated robust cylinder pressure sensor with integrated smart electronics and an openly programmed engine control unit. The presented pressure sensor consists of a steel membrane and a highly strain-sensitive thin film with laser-welded electrical contacts. All components are optimized for reliable operation at high temperatures. The sensor setup safely converts the in-cylinder pressure of a combustion engine at temperatures of up to 200 ∘C into the desired electrical values. Furthermore, the embedded smart electronics provides a fast analogue to digital conversion and subsequently computes significant combustion parameters in real time, based on implemented thermodynamic equations, namely the 50 % mass fraction burned, the indicated mean effective pressure, the maximum pressure and a digital value, which represents the intensity of knocking. Only these aggregated parameters – not the running pressure values – are sent to the engine control unit. The data communication between the smart sensor and the engine control unit is based on the controller area network bus system, which is widely spread in the automotive industry and allows a robust data transfer minimizing electrical interferences. The established closed-loop combustion control is able to control the ignition angle in accordance with the 50 % mass fraction burned at a certain crankshaft angle. With this loop, the combustion engine is controlled and run efficiently even if the ignition angle is intentionally incorrectly adjusted. The controlled and automatic correction of simulated ageing effects is demonstrated as well as the self-adjustment of an efficient operation when different fuels are used. In addition, our approach saves the computing capacity of the engine control unit by outsourcing the data processing to the sensor system.

2020 ◽  
Vol 20 (1) ◽  
pp. 16
Author(s):  
Arnez Pramesti Ardi ◽  
Ilham Sukma Aulia ◽  
Rizky Ardianto Priramadhi ◽  
Denny Darlis

Based on data from the Indonesian Traffic Corps by September 2019, the number of car accidents was dominated by rear-hit crashes with 6,966 accidents. Most of these accidents occurred during car convoys. It needs a car-to-car communication to increase driver awareness. One of the technologies that can be applied is Visible Light Communication (VLC) and infrared communication. The transmitted data are the vehicle speed data, throttle position, and brake stepping indicator. The data are obtained by reading the Engine Control Unit (ECU) in the car. The data are packaged from the three data and sent to other cars at day and night using VLC and infrared communication. The experimental results show that in a communication system that uses VLC, data can be exchanged between cars during the day up to 2 meters and at night up to 11 meters. Otherwise, in infrared communication, vehicles can communicate during the day up to 2 meters and at night up to 0.7 meter. The test was also carried out with some conditions such as rain, smoke, passers, and other vehicle lights.


2019 ◽  
Vol 21 (3) ◽  
pp. 484-496 ◽  
Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Alvin Barbier

This work presents a closed-loop combustion control concept using in-cylinder pressure as a feedback in a dual-fuel combustion engine. At low load, reactivity controlled compression ignition combustion was used while a diffusive dual-fuel combustion was performed at higher loads. The aim of the presented controller is to maintain the indicated mean effective pressure and the combustion phasing at a target value, and to keep the maximum pressure derivative under a limit to avoid engine damage in all the combustion modes by cyclically adapting the injection settings. Various tests were performed at steady-state conditions showing good abilities to fulfil the expected operating conditions but also to reject disturbances such as intake pressure or exhaust gas recirculation variations. Finally, the proposed control strategy was tested during a load transient resulting in a combustion switching-mode and the results exhibited the closed-loop potential for controlling such combustion concept.


Sign in / Sign up

Export Citation Format

Share Document