scholarly journals Phosphoserine for the generation of lanthanide-binding sites on proteins for paramagnetic nuclear magnetic resonance spectroscopy

2021 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Sreelakshmi Mekkattu Tharayil ◽  
Mithun Chamikara Mahawaththa ◽  
Choy-Theng Loh ◽  
Ibidolapo Adekoya ◽  
Gottfried Otting

Abstract. Pseudocontact shifts (PCSs) generated by paramagnetic lanthanide ions provide valuable long-range structural information in nuclear magnetic resonance (NMR) spectroscopic analyses of biological macromolecules such as proteins, but labelling proteins site-specifically with a single lanthanide ion remains an ongoing challenge, especially for proteins that are not suitable for ligation with cysteine-reactive lanthanide complexes. We show that a specific lanthanide-binding site can be installed on proteins by incorporation of phosphoserine in conjunction with other negatively charged residues, such as aspartate, glutamate or a second phosphoserine residue. The close proximity of the binding sites to the protein backbone leads to good immobilization of the lanthanide ion, as evidenced by the excellent quality of fits between experimental PCSs and PCSs calculated with a single magnetic susceptibility anisotropy (Δχ) tensor. An improved two-plasmid system was designed to enhance the yields of proteins with genetically encoded phosphoserine, and good lanthanide ion affinities were obtained when the side chains of the phosphoserine and aspartate residues are not engaged in salt bridges, although the presence of too many negatively charged residues in close proximity can also lead to unfolding of the protein. In view of the quality of the Δχ tensors that can be obtained from lanthanide-binding sites generated by site-specific incorporation of phosphoserine, this method presents an attractive tool for generating PCSs in stable proteins, particularly as it is independent of cysteine residues.

2020 ◽  
Author(s):  
Sreelakshmi Mekkattu Tharayil ◽  
Mithun Chamikara Mahawaththa ◽  
Choy-Theng Loh ◽  
Ibidolapo Adekoya ◽  
Gottfried Otting

Abstract. Pseudocontact shifts (PCS) generated by paramagnetic lanthanide ions provide valuable long-range structural information in NMR spectroscopic analyses of biological macromolecules such as proteins, but labelling proteins site-specifically with a single lanthanide ion remains an ongoing challenge, especially for proteins that are not suitable for ligation with cysteine-reactive lanthanide complexes. We show that a specific lanthanide binding site can be installed on proteins by incorporation of phosphoserine in conjunction with other negatively charged residues, such as aspartate, glutamate or a second phosphoserine residue. The close proximity of the binding sites to the protein backbone leads to good immobilization of the lanthanide ion, as evidenced by the excellent quality of fits between experimental PCSs and PCSs calculated with a single magnetic susceptibility anisotropy (Δχ) tensor. An improved two-plasmid system was designed to enhance the yields of proteins with genetically encoded phosphoserine and good lanthanide ion affinities were obtained when the side chains of the phosphoserine and aspartate residues are not engaged in salt bridges, although the presence of too many negatively charged residues in close proximity can also lead to unfolding of the protein. In view of the quality of the Δχ tensors that can be obtained from lanthanide binding sites generated by site-specific incorporation of phosphoserine, this method presents an attractive tool for generating PCSs in stable proteins, particularly as it is independent of cysteine residues.


1975 ◽  
Vol 53 (12) ◽  
pp. 1250-1254 ◽  
Author(s):  
Roderick E. Wasylishen ◽  
Moira R. Graham

Carbon-13 nuclear magnetic resonance spectroscopy has been used to identify sites in bacitracin which bind Cu2+ and Mn2+. Results are presented which implicate the free carboxyl groups of the aspartic and glutamic acid residues and the imidazole ring of the histidine residue as metal complexation sites between pH 6 and 8. Evidence is presented which also indicates that the thiazoline ring of bacitracin binds Mn2+. Bacitracin does not bind Cu2+ or Mn2+ at pH values of 2.5 or less.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 170
Author(s):  
Meriam Khelifa ◽  
Denis Mounier ◽  
Nourdin Yaakoubi

The electromagnetic properties of scroll microcoils are investigated with finite element modelling (FEM) and the design of experiment (DOE) approach. The design of scroll microcoils was optimized for nuclear magnetic resonance (NMR) spectroscopy of nanoliter and subnanoliter sample volumes. The unusual proximity effect favours optimised scroll microcoils with a large number of turns rolled up in close proximity. Scroll microcoils have many advantages over microsolenoids: such as ease of fabrication and better B1-homogeneity for comparable intrinsic signal-to-noise ratio (SNR). Scroll coils are suitable for broadband multinuclei NMR spectroscopy of subnanoliter sample.


Sign in / Sign up

Export Citation Format

Share Document