scholarly journals Design and analysis of a bio-inspired module-based robotic arm

2016 ◽  
Vol 7 (2) ◽  
pp. 155-166
Author(s):  
Zirong Luo ◽  
Jianzhong Shang ◽  
Guowu Wei ◽  
Lei Ren

Abstract. This paper presents a novel bio-inspired modular robotic arm that is purely evolved and developed from a mechanical stem cell. Inspired by stem cell whilst different from the other robot "cell" or "molecule", a fundamental mechanical stem cell is proposed leading to the development of mechanical cells, bones and a Sarrus-linkage-based muscle. Using the proposed bones and muscles, a bio-inspired modular-based five-degrees-of-freedom robotic arm is developed. Then, kinematics of the robotic arm is investigated which is associated with an optimization-method-based numerical iterative algorithm leading to the inverse kinematic solutions through solving the non-linear transcendental equations. Subsequently, numerical example of the proposed robotic arm is provided with simulations illustrating the workspace and inverse kinematics of the arm. Further, a prototype of the robotic arm is developed which is integrated with low-level control systems, and initial motion and manipulation tests are implemented. The results indicate that this novel robotic arm functions appropriately and has the virtues of lower cost, larger workspace, and a simpler structure with more compact size.

2014 ◽  
Vol 611 ◽  
pp. 75-82 ◽  
Author(s):  
Ivan Virgala ◽  
Alexander Gmiterko ◽  
Michal Kelemen ◽  
Ľubica Miková ◽  
Martin Varga

Our study deals with inverse kinematic model of humanoid robot hand. It is important for modeling to know biomechanics of biological human hand, what is discussed in the second section. Based on theoretical aspect of kinematic configuration of the hand, the hand consisting of 24 degrees of freedom is assumed. Subsequently, there are four numerical methods of inverse kinematics used, namely pseudoinverse method, Jacobian transpose method, damped least squares and optimization method. Each of them is simulated in software Matlab and the results are compared and discussed. In the conclusion the best method from the view of solution time and number of iteration cycles is evaluated.


Robotica ◽  
2014 ◽  
Vol 33 (4) ◽  
pp. 747-767 ◽  
Author(s):  
Masayuki Shimizu

SUMMARYThis paper proposes an analytical method of solving the inverse kinematic problem for a humanoid manipulator with five degrees-of-freedom (DOF) under the condition that the target orientation of the manipulator's end-effector is not constrained around an axis fixed with respect to the environment. Since the number of the joints is less than six, the inverse kinematic problem cannot be solved for arbitrarily specified position and orientation of the end-effector. To cope with the problem, a generalized unconstrained orientation is introduced in this paper. In addition, this paper conducts the singularity analysis to identify all singular conditions.


Author(s):  
Karim Abdel-Malek ◽  
Wei Yu ◽  
Zan Mi ◽  
E. Tanbour ◽  
M. Jaber

Abstract Inverse kinematics is concerned with the determination of joint variables of a manipulator given its final position or final position and orientation. Posture prediction also refers to the same problem but is typically associated with models of the human limbs, in particular for postures assumed by the torso and upper extremities. There has been numerous works pertaining to the determination and enumeration of inverse kinematic solutions for serial robot manipulators. Part of these works have also been directly extended to the determination of postures for humans, but have rarely addressed the choice of solutions undertaken by humans, but have focused on purely kinematic solutions. In this paper, we present a theoretical framework that is based on cost functions as human performance measures, subsequently predicting postures based on optimizing one or more of such cost functions. This paper seeks to answer two questions: (1) Is a given point reachable (2) If the point is reachable, we shall predict a realistic posture. We believe that the human brain assumes different postures driven by the task to be executed and not only on geometry. Furthermore, because of our optimization approach to the inverse kinematics problem, models with large number of degrees of freedom are addressed. The method is illustrated using several examples.


Robotica ◽  
2005 ◽  
Vol 23 (1) ◽  
pp. 123-129 ◽  
Author(s):  
John Q. Gan ◽  
Eimei Oyama ◽  
Eric M. Rosales ◽  
Huosheng Hu

For robotic manipulators that are redundant or with high degrees of freedom (dof), an analytical solution to the inverse kinematics is very difficult or impossible. Pioneer 2 robotic arm (P2Arm) is a recently developed and widely used 5-dof manipulator. There is no effective solution to its inverse kinematics to date. This paper presents a first complete analytical solution to the inverse kinematics of the P2Arm, which makes it possible to control the arm to any reachable position in an unstructured environment. The strategies developed in this paper could also be useful for solving the inverse kinematics problem of other types of robotic arms.


2021 ◽  
Vol 343 ◽  
pp. 08004
Author(s):  
Mihai Crenganis ◽  
Alexandru Barsan ◽  
Melania Tera ◽  
Anca Chicea

In this paper, a dynamic analysis for a 5 degree of freedom (DOF) robotic arm with serial topology is presented. The dynamic model of the robot is based on importing a tri-dimensional CAD model of the robot into Simulink®-Simscape™-Multibody™. The dynamic model of the robot in Simscape is a necessary and important step in development of the mechanical structure of the robot. The correct choice of the electric motors is made according to the resistant joint torques determined by running the dynamic analysis. One can import complete CAD assemblies, including all masses, inertias, joints, constraints, and tri-dimensional geometries, into the model block. The first step for executing a dynamic analysis is to resolve the Inverse Kinematics (IK) problem for the redundant robot. The proposed method for solving the inverse kinematic problem for this type of structure is based on a geometric approach and validated afterwards using SimScape Multibody. Solving the inverse kinematics problem is a mandatory step in the dynamic analysis of the robot, this is required to drive the robot on certain user-imposed trajectories. The dynamic model of the serial robot is necessary for the simulation of motion, analysis of the robot’s structure and design of optimal control algorithms.


Respati ◽  
2019 ◽  
Vol 14 (3) ◽  
Author(s):  
Ahmad Zaid Rahman, Ema Utami, Hanif Al Fatta

Perkembangan industri animasi saat ini, khususnya animasi digital yang dibuat pada umumnya sudah menggunakan bantuan dari komputer telah menjadi salah satu industri yang paling menguntungkan dengan angka pertumbuhan yang tinggi di setiap tahunnya. Model gerakan yang digunakan dalam proses animasi dapat dibuat dengan berbagai macam metode, salah satu metodenya adalah inverse kinematic. Metode ini diharapkan dapat menghasilkan gerak animasi yang lebih akurat. Penelitian ini menguji metode inverse kinematics dan diimplementasikan kedalam animasi 3D karakter manusia. Pada proses Pengujian akan dilakukan oleh animator professional dengan menganimasikan karakter 3 Dimensi yang sudah diberi parameter tolak ukur kebebasan tulang (Degrees of Freedom) dan menganimasikan karakter 3 Dimensi yang tidak menggunakan tolak ukur kebebasan tulang (Degrees of Freedom). Selanjutnya ditahap pengujian setelah dilakukan penganimasian pada karakter 3 Dimensi, yaitu membandingkan sudut yang terbentuk dari setiap sendi pada bagian tubuh animasi 3 Dimensi yang telah dibuat menggunakan metode inverse kinematic dengan video referensi yang berupa video live shoot. Pengujian ini penulis lakukan bertujuan untuk mengetahui berapa akurasi kemiripan dari kedua video tersebut. Software yang digunakan untuk mengukur sudut gerak sendi yaitu Tracker. Hasil dari penelitian ini ialah, untuk memberikan solusi agar pembuatan animasi 3D dapat lebih akurat dengan memperhatikan tolak ukur kebebasan tulang (Degrees of Freedom) sesuai anatomi pada manusia dan menggunakan metode inverse kinematics  sehingga lebih akurat.Kata kunci—Animasi 3D, Gerakan, Inverse Kinematics, Rangka manusia, Sendi .


Proceedings ◽  
2018 ◽  
Vol 4 (1) ◽  
pp. 31
Author(s):  
Guillaume Plouffe ◽  
Pierre Payeur ◽  
Ana-Maria Cretu

In this paper, we propose a vision-based recognition approach to control the posture of a robotic arm with three degrees of freedom (DOF) using static and dynamic human hand gestures. Two different methods are investigated to intuitively control a robotic arm posture in real-time using depth data collected by a Kinect sensor. In the first method, the user’s right index fingertip position is mapped to compute the inverse kinematics on the robot. Using the Forward And Backward Reaching Inverse Kinematics (FABRIK) algorithm, the inverse kinematics (IK) solutions are displayed in a graphical interface. Using this interface and his left hand, the user can intuitively browse and select a desired robotic arm posture. In the second method, the user’s left index position and direction are respectively used to determine the end-effector position and an attraction point position. The latter enables the control of the robotic arm posture. The performance of these real-time natural human control approaches is evaluated for precision and speed against static and dynamic obstacles.


Author(s):  
Muhammad Aziz Muslim ◽  
Mochammad Rusli ◽  
Achnafian Rafif Zufaryansyah ◽  
B. S. K. K. Ibrahim

As the main testbed platform of Artificial Intelligence, the robot plays an essential role in creating an environment for industrial revolution 4.0. According to their bases, the robot can be categorized into a fixed based robot and a mobile robot. Current robotics research direction is interesting since people strive to create a mobile robot able to move in the land, water, and air. This paper presents development of a quadruped mobile robot and its movement system using geometric-based inverse kinematics. The study is related to the movement of a four-legged (quadruped) mobile robot with three Degrees of Freedom (3 DOF) for each leg. Because it has four legs, the movement of the robot can only be done through coordinating the movements of each leg. In this study, the trot gait pattern method is proposed to coordinate the movement of the robot's legs. The end-effector position of each leg is generated by a simple trajectory generator with half rectified sine wave pattern. Furthermore, to move each robot's leg, it is proposed to use geometric-based inverse kinematic. The experimental results showed that the proposed method succeeded in moving the mobile robot with precision. Movement errors in the translation direction are 1.83% with the average pose error of 1.33 degrees, means the mobile robot has good walking stability.


2015 ◽  
Vol 762 ◽  
pp. 305-311
Author(s):  
Mihai Crenganis ◽  
Octavian Bologa

In this paper we have presented a method to solve the inverse kinematics problem of a redundant robotic arm with seven degrees of freedom and a human like workspace based on mathematical equations, Fuzzy Logic implementation and Simulink models. For better visualization of the kinematics simulation a CAD model that mimics the real robotic arm was created into SolidWorks® and then the CAD parts were converted into SimMechanics model.


Sign in / Sign up

Export Citation Format

Share Document