scholarly journals Application of FLaIR model for early warning system in Chibo Pashyor, Kalimpong, India for rainfall-induced landslides

Author(s):  
Abhirup Dikshit ◽  
Neelima Satyam

Abstract. The development of an early warning system for landslides due to rainfall has become an indispensable part for landslide risk mitigation. This paper explains the application of the hydrological FLaIR (Forecasting of Landslides Induced by Rainfall) model, correlating rainfall amount and landslide events. The FLaIR model comprises of two modules: RL (Rainfall-Landslide) which correlates rainfall and landslide occurrence and RF (Rainfall-Forecasting) which allows simulation of future rainfall events. The model can predetermine landslides based on identification of mobility function Y(.) which links actual rainfall and incidence of landslide occurrence. The critical value of mobility function was analyzed using 1st July 2015 event and applying it to 2016 monsoon to validate the results. These rainfall thresholds presented can be improved with intense hourly rainfall and landslide inventory data. This paper describes the details of the model and its performance for the study area.

2017 ◽  
Vol 17 (10) ◽  
pp. 1713-1723 ◽  
Author(s):  
Emanuele Intrieri ◽  
Federica Bardi ◽  
Riccardo Fanti ◽  
Giovanni Gigli ◽  
Francesco Fidolini ◽  
...  

Abstract. A big challenge in terms or landslide risk mitigation is represented by increasing the resiliency of society exposed to the risk. Among the possible strategies with which to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as critical infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System): An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a data collecting and processing center (DCPC), where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. The aim of this paper is to show how logistic issues linked to advanced monitoring techniques, such as big data transfer and storing, can be dealt with compatibly with an early warning system. Therefore, we focus on the interaction between an areal monitoring tool (a ground-based interferometric radar) and the DCPC. By converting complex data into ASCII strings and through appropriate data cropping and average, and by implementing an algorithm for line-of-sight correction, we managed to reduce the data daily output without compromising the capability for performing.


Landslides ◽  
2021 ◽  
Author(s):  
Won Young Lee ◽  
Seon Ki Park ◽  
Hyo Hyun Sung

AbstractThe purpose of this study is to establish the criteria for a landslide early warning system (LEWS). We accomplished this by deriving optimal thresholds for the cumulative event rainfall–duration (ED) and identifying the characteristics of the rainfall variables associated with a high probability of landslide occurrence via a Bayesian model. We have established these system criteria using rainfall and landslide data for Chuncheon, Republic of Korea. Heavy rainfall is the leading cause of landslides in Chuncheon; thus, it is crucial to determine the rainfall conditions that trigger landslides. Hourly rainfall data spanning 1999 to 2017 from seven gauging stations were utilized to establish the ED thresholds and the Bayesian model. We used three different calibration periods of rainfall events split by 12, 24, 48, and 96 non-rainfall hours to calibrate the ED thresholds. Finally, the optimal threshold was determined by comparing the results of the contingency table and the skill scores that maximize the probability of detection (POD) score and minimize the probability of false detection (POFD) score. In the LEWS, by considering the first level as “normal,” we developed subsequent step-by-step warning levels based on the Bayesian model as well as the ED thresholds. We propose the second level, “watch,” when the rainfall condition is above the ED thresholds. We then adopt the third level, “warning,” and the fourth level, “severe warning,” based on the probability of landslide occurrence determined via a Bayesian model that considers several factors including the rainfall conditions of landslide vs. non-landslide and various rainfall variables such as hourly maximum rainfall and 3-day antecedent rainfall conditions. The proposed alert level predicted a total of 98.2% of the landslide occurrences at the levels of “severe warning” and “warning” as a result of the model fitness verification. The false alarm rate is 0% for the severe warning level and 47.4% for the warning level. We propose using the optimal ED thresholds to forecast when landslides are likely to occur in the local region. Additionally, we propose the ranges of rainfall variables that represent a high landslide probability based on the Bayesian model to set the landslide warning standard that fits the local area’s characteristics.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2113 ◽  
Author(s):  
Minu Treesa Abraham ◽  
Deekshith Pothuraju ◽  
Neelima Satyam

Idukki is a South Indian district in the state of Kerala, which is highly susceptible to landslides. This hilly area which is a hub of a wide variety of flora and fauna, has been suffering from slope stability issues due to heavy rainfall. A well-established landslide early warning system for the region is the need of the hour, considering the recent landslide disasters in 2018 and 2019. This study is an attempt to define a regional scale rainfall threshold for landslide occurrence in Idukki district, as the first step of establishing a landslide early warning system. Using the rainfall and landslide database from 2010 to 2018, an intensity-duration threshold was derived as I = 0.9D-0.16 for the Idukki district. The effect of antecedent rainfall conditions in triggering landslide events was explored in detail using cumulative rainfalls of 3 days, 10 days, 20 days, 30 days, and 40 days prior to failure. As the number of days prior to landslide increases, the distribution of landslide events shifts towards antecedent rainfall conditions. The biasness increased from 72.12% to 99.56% when the number of days was increased from 3 to 40. The derived equations can be used along with a rainfall forecasting system for landslide early warning in the study region.


Climate ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 131
Author(s):  
Alfonso Gutierrez-Lopez ◽  
Ivonne Cruz-Paz ◽  
Martin Muñoz Mandujano

Forecasting extreme precipitations is one of the main priorities of hydrology in Latin America and the Caribbean (LAC). Flood damage in urban areas increases every year, and is mainly caused by convective precipitations and hurricanes. In addition, hydrometeorological monitoring is limited in most countries in this region. Therefore, one of the primary challenges in the LAC region the development of a good rainfall forecasting model that can be used in an early warning system (EWS) or a flood early warning system (FEWS). The aim of this study was to provide an effective forecast of short-term rainfall using a set of climatic variables, based on the Clausius–Clapeyron relationship and taking into account that atmospheric water vapor is one of the variables that determine most meteorological phenomena, particularly regarding precipitation. As a consequence, a simple precipitation forecast model was proposed from data monitored at every minute, such as humidity, surface temperature, atmospheric pressure, and dewpoint. With access to a historical database of 1237 storms, the proposed model allows use of the right combination of these variables to make an accurate forecast of the time of storm onset. The results indicate that the proposed methodology was capable of predicting precipitation onset as a function of the atmospheric pressure, humidity, and dewpoint. The synoptic forecast model was implemented as a hydroinformatics tool in the Extreme Precipitation Monitoring Network of the city of Queretaro, Mexico (RedCIAQ). The improved forecasts provided by the proposed methodology are expected to be useful to support disaster warning systems all over Mexico, mainly during hurricanes and flashfloods.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1616 ◽  
Author(s):  
Abhirup Dikshit ◽  
Raju Sarkar ◽  
Biswajeet Pradhan ◽  
Saroj Acharya ◽  
Kelzang Dorji

Consistently over the years, particularly during monsoon seasons, landslides and related geohazards in Bhutan are causing enormous damage to human lives, property, and road networks. The determination of thresholds for rainfall triggered landslides is one of the most effective methods to develop an early warning system. Such thresholds are determined using a variety of rainfall parameters and have been successfully calculated for various regions of the world at different scales. Such thresholds can be used to forecast landslide events which could help in issuing an alert to civic authorities. A comprehensive study on the determination of rainfall thresholds characterizing landslide events for Bhutan is lacking. This paper focuses on defining event rainfall–duration thresholds for Chukha Dzongkhag, situated in south-west Bhutan. The study area is chosen due to the increase in frequency of landslides during monsoon along Phuentsholing-Thimphu highway, which passes through it and this highway is a major trade route of the country with the rest of the world. The present threshold method revolves around the use of a power law equation to determine event rainfall–duration thresholds. The thresholds have been established using available rainfall and landslide data for 2004–2014. The calculated threshold relationship is fitted to the lower boundary of the rainfall conditions leading to landslides and plotted in logarithmic coordinates. The results show that a rainfall event of 24 h with a cumulated rainfall of 53 mm can cause landslides. Later on, the outcome of antecedent rainfall varying from 3–30 days was also analysed to understand its effect on landslide incidences based on cumulative event rainfall. It is also observed that a minimum 10-day antecedent rainfall of 88 mm and a 20-day antecedent rainfall of 142 mm is required for landslide occurrence in the area. The thresholds presented can be improved with the availability of hourly rainfall data and the addition of more landslide data. These can also be used as an early warning system especially along the Phuentsholing–Thimphu Highway to prevent any disruptions of trade.


2017 ◽  
Author(s):  
Emanuele Intrieri ◽  
Federica Bardi ◽  
Riccardo Fanti ◽  
Giovanni Gigli ◽  
Francesco Fidolini ◽  
...  

Abstract. A big challenge in terms or landslide risk mitigation is represented by the increasing of the resiliency of society exposed to the risk. Among the possible strategies to reach this goal, there is the implementation of early warning systems. This paper describes a procedure to improve early warning activities in areas affected by high landslide risk, such as those classified as Critical Infrastructures for their central role in society. This research is part of the project LEWIS (Landslides Early Warning Integrated System): An Integrated System for Landslide Monitoring, Early Warning and Risk Mitigation along Lifelines. LEWIS is composed of a susceptibility assessment methodology providing information for single points and areal monitoring systems, a data transmission network and a Data Collecting And Processing Center (DCPC), where readings from all monitoring systems and mathematical models converge and which sets the basis for warning and intervention activities. In this paper we will focus on the interaction between an areal monitoring tool (a ground-based interferometric radar) and the DCPC, and how issues such as big data transfer, real-time warning, line of sight correction and data validation in emergency conditions have been dealt with.


Geosciences ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 451 ◽  
Author(s):  
Rokhmat Hidayat ◽  
Samuel Jonson Sutanto ◽  
Alidina Hidayah ◽  
Banata Ridwan ◽  
Arif Mulyana

Landslides are one of the most disastrous natural hazards in Indonesia, in terms of number of fatalities and economic losses. Therefore, Balai Litbang Sabo (BLS) has developed a Landslide Early Warning System (LEWS) for Indonesia, based on a Delft–FEWS (Flood Early Warning System) platform. This system utilizes daily precipitation data, a rainfall threshold method, and a Transient Rainfall Infiltration and Grid-based Regional Slope-stability model (TRIGRS) to predict landslide occurrences. For precipitation data, we use a combination of 1-day and 3-day cumulative observed and forecasted precipitation data, obtained from the Tropical Rainfall Measuring Mission (TRMM) and the Indonesian Meteorological Climatological and Geophysical Agency (BMKG). The TRIGRS model is used to simulate the slope stability in regions that are predicted to have a high probability of landslide occurrence. Our results show that the landslides, which occurred in Pacitan (28 November 2017) and Brebes regions (22 February 2018), could be detected by the LEWS from one to three days in advance. The TRIGRS model supports the warning signals issued by the LEWS, with a simulated factor of safety values lower than 1 in these locations. The ability of the Indonesian LEWS to detect landslide occurrences in Pacitan and Brebes indicates that the LEWS shows good potential to detect landslide occurrences a few days in advance. However, this system is still undergoing further developments for better landslide prediction.


Sign in / Sign up

Export Citation Format

Share Document