scholarly journals Brief communication: The role of geophysical imaging in local landslide early warning systems

2021 ◽  
Vol 21 (12) ◽  
pp. 3863-3871
Author(s):  
Jim S. Whiteley ◽  
Arnaud Watlet ◽  
J. Michael Kendall ◽  
Jonathan E. Chambers

Abstract. We summarise the contribution of geophysical imaging to local landslide early warning systems (LoLEWS), highlighting how the design and monitoring components of LoLEWS benefit from the enhanced spatial and temporal resolutions of time-lapse geophysical imaging. In addition, we discuss how with appropriate laboratory-based petrophysical transforms, geophysical data can be crucial for future slope failure forecasting and modelling, linking other methods of remote sensing and intrusive monitoring across different scales. We conclude that in light of ever-increasing spatiotemporal resolutions of data acquisition, geophysical monitoring should be a more widely considered technology in the toolbox of methods available to stakeholders operating LoLEWS.

2021 ◽  
Author(s):  
Jim Scott Whiteley ◽  
Arnaud Watlet ◽  
Jonathan Michael Kendall ◽  
Jonathan Edward Chambers

Abstract. We summarise the contribution of geophysical imaging to local landslide early warning systems (LoLEWS), highlighting how LoLEWS design and monitoring components benefit from the enhanced spatial and temporal resolutions of time-lapse geophysical imaging. In addition, we discuss how with appropriate laboratory-based petrophysical transforms, these geophysical data can be crucial for future slope failure forecasting and modelling, linking other methods of remote sensing and intrusive monitoring across different scales. We conclude that in light of ever increasing spatiotemporal resolutions of data acquisition, geophysical monitoring should be a more widely considered technology in the toolbox of methods available to stakeholders operating LoLEWS.


2021 ◽  
Vol 21 (9) ◽  
pp. 2753-2772
Author(s):  
Doris Hermle ◽  
Markus Keuschnig ◽  
Ingo Hartmeyer ◽  
Robert Delleske ◽  
Michael Krautblatter

Abstract. While optical remote sensing has demonstrated its capabilities for landslide detection and monitoring, spatial and temporal demands for landslide early warning systems (LEWSs) had not been met until recently. We introduce a novel conceptual approach to structure and quantitatively assess lead time for LEWSs. We analysed “time to warning” as a sequence: (i) time to collect, (ii) time to process and (iii) time to evaluate relevant optical data. The difference between the time to warning and “forecasting window” (i.e. time from hazard becoming predictable until event) is the lead time for reactive measures. We tested digital image correlation (DIC) of best-suited spatiotemporal techniques, i.e. 3 m resolution PlanetScope daily imagery and 0.16 m resolution unmanned aerial system (UAS)-derived orthophotos to reveal fast ground displacement and acceleration of a deep-seated, complex alpine mass movement leading to massive debris flow events. The time to warning for the UAS/PlanetScope totals 31/21 h and is comprised of time to (i) collect – 12/14 h, (ii) process – 17/5 h and (iii) evaluate – 2/2 h, which is well below the forecasting window for recent benchmarks and facilitates a lead time for reactive measures. We show optical remote sensing data can support LEWSs with a sufficiently fast processing time, demonstrating the feasibility of optical sensors for LEWSs.


2013 ◽  
Vol 13 (1) ◽  
pp. 85-90 ◽  
Author(s):  
E. Intrieri ◽  
G. Gigli ◽  
N. Casagli ◽  
F. Nadim

Abstract. We define landslide Early Warning Systems and present practical guidelines to assist end-users with limited experience in the design of landslide Early Warning Systems (EWSs). In particular, two flow chart-based tools coming from the results of the SafeLand project (7th Framework Program) have been created to make them as simple and general as possible and in compliance with a variety of landslide types and settings at single slope scale. We point out that it is not possible to cover all the real landslide early warning situations that might occur, therefore it will be necessary for end-users to adapt the procedure to local peculiarities of the locations where the landslide EWS will be operated.


Author(s):  
Erzsébet Győri ◽  
Arman Bulatovich Kussainov ◽  
Gyöngyvér Szanyi ◽  
Zoltán Gráczer ◽  
Kendebay Zhanabilovich Raimbekov ◽  
...  

Earthquakes are one of the most devastating natural disasters on Earth, causing sometimes huge economic losses and many human casualties. Since earthquake prediction is not yet possible, the purpose of civil protection is to reduce damage and protect human lives, in which the seismological networks of different countries play a very important role. Special applications of seismic networks are the early warning systems that can be used to protect vulnerable infrastructures using automated shutdown procedures, to stop high velocity trains and to save lives if the general public is notified about imminent strong ground shaking. In this paper, we describe the aims and operation of seismological networks, covering in more detail the early warning systems. Then we delineate the seismotectonic settings and seismicity in Hungary and Kazakhstan, furthermore, describe the operating seismological networks and the related scientific research areas with emphasis on civil protection. Hungary and Kazakhstan differ not only in the size of their territory, but also in their seismicity, therefore, in addition to the similarities, there are also significant differences between the aims and problems of their seismological networks.


2021 ◽  
Author(s):  
Luca Piciullo ◽  
Michele Calvello

<p>Landslide early warning systems (LEWS) can be classified in either territorial or local systems (Piciullo et al., 2018). Systems addressing single landslides, at slope scale, can be named local LEWS (Lo-LEWS), systems operating over wide areas, at regional scale, can be referred to as territorial systems (Te-LEWS). Te-LEWS deal with the occurrence of several landslides within wide warning zones at municipal/regional/national scale. Nowadays, there are around 30 Te-LEWS operational worldwide (Piciullo et al., 2018; Guzzetti et al., 2020). The performance evaluation of such systems is often overlooked, and a standardized procedure is still missing. Often the performance evaluation is based on 2 by 2 contingency tables computed for the joint frequency distribution of landslides and alerts, both considered as dichotomous variables. This approach can lead to an imprecise assessment of the warning model, because it cannot differentiate among different levels of warning and the variable number of landslides that may occur in a time interval.</p><p>To overcome this issue Calvello and Piciullo (2016) proposed an original method for the performance analysis of a warning model, named EDuMaP, acronym of the method’s three main phases: Event analysis, Duration Matrix computation, Performance assessment. The method is centered around the computation of a n by m duration matrix that quantifies the time associated with the occurrence (and non-occurrence) of a given landslide event in relation to the different warning levels adopted by a Te-LEWS. Different performance criteria and indicators can be applied to evaluate the computed duration matrix.</p><p>Since 2016, the EDuMaP method has been applied to evaluate the performance of several Te-LEWS operational worldwide: Rio de Janeiro, Brazil (Calvello and Piciullo, 2016); Norway, Vestlandet (Piciullo et al., 2017a); Piemonte region, Italy (Piciullo et al., 2020), Amalfi coast, Italy (Piciullo et al., 2017b). These systems have different structures and warning models with either fixed or variable warning zones. In all cases, the EDuMaP method has proved to be flexible enough to successfully perform the evaluation of the warning models, highlighting critical and positive aspects of such systems, as well as proving that simpler evaluation methods do not allow a detailed assessment of the seriousness of the errors and of the correctness of the predictions of Te-LEWS (Piciullo et al., 2020).</p><p>Calvello M, Piciullo L (2016) Assessing the performance of regional landslide early warning models: the EDuMaP method. Nat Hazards Earth Syst Sc 16:103–122. https://doi.org/10.5194/nhess-16-103-2016</p><p>Guzzetti et al (2020) Geographical landslide early warning systems. Earth Sci Rev 200:102973. https://doi.org/10.1016/j.earsc irev.2019.102973</p><p>Piciullo et al (2018) Territorial early warning systems for rainfall-induced landslides. Earth Sci Rev 179:228–247. https://doi.org/10.1016/j.earscirev.2018.02.013</p><p>Piciullo et al (2017a) Adaptation of the EDuMaP method for the performance evaluation of the alerts issued on variable warning zones. Nat Hazards Earth Sys Sc 17:817–831. https://doi.org/10.5194/nhess-17-817-2017</p><p>Piciullo et al (2017b) Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 14:995–1008. https://doi.org/10.1007/s10346-016-0750-2</p><p>Piciullo et al (2020). Standards for the performance assessment of territorial landslide early warning systems. Landslides 17:2533–2546. https://doi.org/10.1007/s10346-020-01486-4</p>


Author(s):  
Zahidur Rahman ◽  
Leonid Roytman ◽  
Abdelhamid Kadik ◽  
Dilara A. Rosy ◽  
Pradipta Nandi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document