scholarly journals Computing nonlinear force free coronal magnetic fields

2003 ◽  
Vol 10 (4/5) ◽  
pp. 313-322 ◽  
Author(s):  
T. Wiegelmann ◽  
T. Neukirch

Abstract. Knowledge of the structure of the coronal magnetic field is important for our understanding of many solar activity phenomena, e.g. flares and CMEs. However, the direct measurement of coronal magnetic fields is not possible with present methods, and therefore the coronal field has to be extrapolated from photospheric measurements. Due to the low plasma beta the coronal magnetic field can usually be assumed to be approximately force free, with electric currents flowing along the magnetic field lines. There are both observational and theoretical reasons which suggest that at least prior to an eruption the coronal magnetic field is in a nonlinear force free state. Unfortunately the computation of nonlinear force free fields is way more difficult than potential or linear force free fields and analytic solutions are not generally available. We discuss several methods which have been proposed to compute nonlinear force free fields and focus particularly on an optimization method which has been suggested recently. We compare the numerical performance of a newly developed numerical code based on the optimization method with the performance of another code based on an MHD relaxation method if both codes are applied to the reconstruction of a semi-analytic nonlinear force-free solution. The optimization method has also been tested for cases where we add random noise to the perfect boundary conditions of the analytic solution, in this way mimicking the more realistic case where the boundary conditions are given by vector magnetogram data. We find that the convergence properties of the optimization method are affected by adding noise to the boundary data and we discuss possibilities to overcome this difficulty.

1994 ◽  
Vol 144 ◽  
pp. 559-564
Author(s):  
P. Ambrož ◽  
J. Sýkora

AbstractWe were successful in observing the solar corona during five solar eclipses (1973-1991). For the eclipse days the coronal magnetic field was calculated by extrapolation from the photosphere. Comparison of the observed and calculated coronal structures is carried out and some peculiarities of this comparison, related to the different phases of the solar cycle, are presented.


2015 ◽  
Vol 11 (S320) ◽  
pp. 167-174
Author(s):  
M. S. Wheatland ◽  
S. A. Gilchrist

AbstractWe review nonlinear force-free field (NLFFF) modeling of magnetic fields in active regions. The NLFFF model (in which the electric current density is parallel to the magnetic field) is often adopted to describe the coronal magnetic field, and numerical solutions to the model are constructed based on photospheric vector magnetogram boundary data. Comparative tests of NLFFF codes on sets of boundary data have revealed significant problems, in particular associated with the inconsistency of the model and the data. Nevertheless NLFFF modeling is often applied, in particular to flare-productive active regions. We examine the results, and discuss their reliability.


2014 ◽  
Vol 80 (2) ◽  
pp. 173-195 ◽  
Author(s):  
S. M. Moawad

AbstractKnowledge of the structure of coronal magnetic field originating from the photosphere is relevant to the understanding of many solar activity phenomena, e.g. flares, solar prominences, coronal loops, and coronal heating. In most of the existing literature, these loop-like magnetic structures are modeled as force-free magnetic fields (FFMF) without any plasma flow. In this paper, we present several exact solution classes for nonlinear FFMF, in both translational and axisymmetric geometries. The solutions are considered for their possible relevance to astrophysics and solar physics problems. These are used to illustrate arcade-type magnetic field structures of the photosphere and twisted magnetic flux ropes through the coronal mass ejections (CMEs), as well as magnetic confinement fusion plasmas.


2001 ◽  
Vol 203 ◽  
pp. 328-330
Author(s):  
H. Wang ◽  
Y. Yan ◽  
T. Sakurai

Supposing coronal magnetic fields are in a force-free state from the chromosphere to the height of two solar radii, we reconstruct 3D force-free magnetic fields by making use of a new numerical technique, in which the fields are represented by a boundary integral equation based on a specific Green's function. Vector magnetic fields observed on the photospheric surface can be taken as the boundary conditions of this equation. Magnetic fields in AR8270 on 14 July 1998 were employed as an example to exhibit the capability of this numerical technique.


2012 ◽  
Vol 8 (S294) ◽  
pp. 579-580
Author(s):  
Rui Wang ◽  
Yihua Yan

AbstractA GPU-based acceleration for the direct boundary integral equation method (GPU-DBIE) to extrapolate solar coronal magnetic fields is developed, which is about 1000 times faster than the original DBIE. The 3-d coronal magnetic field is reconstructed for NOAA 11158 on 14-Feb-2011 with the SDO/HMI vector magnetogram as bottom boundary condition. The extrapolated results agree well with the projected SDO/AIA, EUV loops and the STEREO EUV sideviews, which verifies the correctness of our GPU-DBIE method. It is also found that the group of bright EUV loops along magnetic neutral lines agree well with current lines, which may have played an important role in the flare process of the active region.


Solar Physics ◽  
2020 ◽  
Vol 295 (10) ◽  
Author(s):  
Thomas Wiegelmann ◽  
Thomas Neukirch ◽  
Dieter H. Nickeler ◽  
Iulia Chifu

Abstract In this work we describe a numerical optimization method for computing stationary MHD equilibria. The newly developed code is based on a nonlinear force-free optimization principle. We apply our code to model the solar corona using synoptic vector magnetograms as boundary condition. Below about two solar radii the plasma $\beta $ β and Alfvén Mach number $M_{A}$ M A are small and the magnetic field configuration of stationary MHD is basically identical to a nonlinear force-free field, whereas higher up in the corona (where $\beta $ β and $M_{A}$ M A are above unity) plasma and flow effects become important and stationary MHD and force-free configuration deviate significantly. The new method allows for the reconstruction of the coronal magnetic field further outwards than with potential field, nonlinear force-free or magnetostatic models. This way the model might help to provide the magnetic connectivity for joint observations of remote sensing and in-situ instruments on Solar Orbiter and Parker Solar Probe.


2013 ◽  
Vol 8 (S300) ◽  
pp. 139-146 ◽  
Author(s):  
Sarah Gibson

AbstractMagnetism defines the complex and dynamic solar corona. Twists and tangles in coronal magnetic fields build up energy and ultimately erupt, hurling plasma into interplanetary space. These coronal mass ejections (CMEs) are transient riders on the ever-outflowing solar wind, which itself possesses a three-dimensional morphology shaped by the global coronal magnetic field. Coronal magnetism is thus at the heart of any understanding of the origins of space weather at the Earth. However, we have historically been limited by the difficulty of directly measuring the magnetic fields of the corona, and have turned to observations of coronal plasma to trace out magnetic structure. This approach is complicated by the fact that plasma temperatures and densities vary among coronal magnetic structures, so that looking at any one wavelength of light only shows part of the picture. In fact, in some regimes it is the lack of plasma that is a significant indicator of the magnetic field. Such a case is the coronal cavity: a dark, elliptical region in which strong and twisted magnetism dwells. I will elucidate these enigmatic features by presenting observations of coronal cavities in multiple wavelengths and from a variety of observing vantages, including unprecedented coronal magnetic field measurements now being obtained by the Coronal Multichannel Polarimeter (CoMP). These observations demonstrate the presence of twisted magnetic fields within cavities, and also provide clues to how and why cavities ultimately erupt as CMEs.


1993 ◽  
Vol 141 ◽  
pp. 302-305 ◽  
Author(s):  
V.M. Bogod ◽  
G.B. Gelfreikh ◽  
B.I. Ryabov ◽  
S.R. Hafizov

AbstractWe present preliminary results of radio observations of the Sun with the Panoramic Analyzer of the Spectrum (21 channels in 1.8 – 8.2 cm wavelength range) of the radio telescope RATAN-600. Observations on 1992 January 9 – 10 have shown double inversion of the sign of a local source through the microwave wavelength range with fine spectral structure. This phenomenon can be treated as a result of mode coupling when the electromagnetic wave crosses two regions of quasi-transverse propagation (QT-region). Using this treatment we have found the strength of the coronal magnetic field at a number of points in the corona above an active region. The results also imply that trans-equatorial coronal arches affect the structure of magnetic fields at heights of about 3 . 1010 cm with B ~ 5 – 10 G.


1994 ◽  
Vol 144 ◽  
pp. 21-28 ◽  
Author(s):  
G. B. Gelfreikh

AbstractA review of methods of measuring magnetic fields in the solar corona using spectral-polarization observations at microwaves with high spatial resolution is presented. The methods are based on the theory of thermal bremsstrahlung, thermal cyclotron emission, propagation of radio waves in quasi-transverse magnetic field and Faraday rotation of the plane of polarization. The most explicit program of measurements of magnetic fields in the atmosphere of solar active regions has been carried out using radio observations performed on the large reflector radio telescope of the Russian Academy of Sciences — RATAN-600. This proved possible due to good wavelength coverage, multichannel spectrographs observations and high sensitivity to polarization of the instrument. Besides direct measurements of the strength of the magnetic fields in some cases the peculiar parameters of radio sources, such as very steep spectra and high brightness temperatures provide some information on a very complicated local structure of the coronal magnetic field. Of special interest are the results found from combined RATAN-600 and large antennas of aperture synthesis (VLA and WSRT), the latter giving more detailed information on twodimensional structure of radio sources. The bulk of the data obtained allows us to investigate themagnetospheresof the solar active regions as the space in the solar corona where the structures and physical processes are controlled both by the photospheric/underphotospheric currents and surrounding “quiet” corona.


Sign in / Sign up

Export Citation Format

Share Document