scholarly journals On the predominance of oblique disturbances in the supersonic shear flow instability of the geomagnetic tail boundary

2003 ◽  
Vol 10 (4/5) ◽  
pp. 351-361 ◽  
Author(s):  
V. V. Mishin

Abstract. A study is made of the influence of the longitudinal magnetic field and density inhomogeneity on the supersonic shear flow instability at the magnetospheric tail boundary. It is shown that the most unstable are slow oblique (3D) disturbances, with a phase velocity approaching at a sufficiently large angle (with respect to the flow direction) the magnetosonic velocity. Their growth rate and spectral width are much larger than those of the usually considered longitudinal (2D) supersonic disturbances. The magnetic field reduces the compressibility effect and, unlike the subsonic case, has a noticeable destabilizing effect on the excitation of oblique disturbances.

1973 ◽  
Vol 57 (3) ◽  
pp. 481-490
Author(s):  
B. Roberts

The effect of a parallel magnetic field upon the stability of the plane interface between two conducting viscous fluids in uniform relative motion is considered. A parameter reduction, which has not previously been noted, is employed to facilitate the solution of the problem. Neutral stability curves for unrestricted ranges of the governing parameters are found, and the approximate solutions of other authors are examined in this light.


2021 ◽  
Vol 28 (2) ◽  
pp. 022309
Author(s):  
A. E. Fraser ◽  
P. W. Terry ◽  
E. G. Zweibel ◽  
M. J. Pueschel ◽  
J. M. Schroeder

2007 ◽  
Vol 19 (8) ◽  
pp. 083102 ◽  
Author(s):  
Teodor Burghelea ◽  
Kerstin Wielage-Burchard ◽  
Ian Frigaard ◽  
D. Mark Martinez ◽  
James J. Feng

2006 ◽  
Author(s):  
Ryo Hayasaka ◽  
Akira Satoh ◽  
Tamotsu Majima

We have studied the influences of the magnetic field, shear rate, and random forces on transport coefficients such as viscosity and diffusion coefficient, and also on the orientational distributions of hematite particles composed of a dilute colloidal dispersion. Hematite particles are modeled as spheroids with a magnetic moment normal to the particle axis. In the present analysis, these particles are assumed to conduct the rotational Brownian motion in a simple shear flow as well as an external magnetic field. The basic equation of the orientational distribution function has been derived from the balance of the torques and solved by the numerical analysis method. The results obtained here are summarized as follows. With increasing the magnetic field, since the magnetic moment is strongly restricted to the magnetic field direction, the motion of the particle is forced to rotate in directions normal to the shear flow direction. In the case of a strong magnetic field and a smaller shear rate, the rodlike particles can freely rotate in the xy-plane with the magnetic moment remaining pointing to the magnetic field direction. On the other hand, for a strong shear flow, the particle has a tendency to incline in the flow direction with the magnetic moment pointing to the magnetic field direction. Additionaly, the diffusion coefficient gives rise to smaller values than expected, since the rodlike particle sediments with the particle inclining toward directions normal to the moment direction.


2011 ◽  
Vol 96 (1) ◽  
pp. 15001 ◽  
Author(s):  
R. Heidemann ◽  
S. Zhdanov ◽  
K. R. Sütterlin ◽  
H. M. Thomas ◽  
G. E. Morfill

Sign in / Sign up

Export Citation Format

Share Document