scholarly journals Detecting nonlinearity in run-up on a natural beach

2007 ◽  
Vol 14 (4) ◽  
pp. 385-393 ◽  
Author(s):  
K. R. Bryan ◽  
G. Coco

Abstract. Natural geophysical timeseries bear the signature of a number of complex, possibly inseparable, and generally unknown combination of linear, stable non-linear and chaotic processes. Quantifying the relative contribution of, in particular, the non-linear components will allow improved modelling and prediction of natural systems, or at least define some limitations on predictability. However, difficulties arise; for example, in cases where the series are naturally cyclic (e.g. water waves), it is most unclear how this cyclic behaviour impacts on the techniques commonly used to detect the nonlinear behaviour in other fields. Here a non-linear autoregressive forecasting technique which has had success in demonstrating nonlinearity in non-cyclical geophysical timeseries, is applied to a timeseries generated by videoing the waterline on a natural beach (run-up), which has some irregular oscillatory behaviour that is in part induced by the incoming wave field. In such cases, the deterministic shape of each run-up cycle has a strong influence on forecasting results, causing questionable results at small (within a cycle) prediction distances. However, the technique can clearly differentiate between random surrogate series and natural timeseries at larger prediction distances (greater than one cycle). Therefore it was possible to clearly identify nonlinearity in the relationship between observed run-up cycles in that a local autoregressive model was more adept at predicting run-up cycles than a global one. Results suggest that despite forcing from waves impacting on the beach, each run-up cycle evolves somewhat independently, depending on a non-linear interaction with previous run-up cycles. More generally, a key outcome of the study is that oscillatory data provide a similar challenge to differentiating chaotic signals from correlated noise in that the deterministic shape causes an additional source of autocorrelation which in turn influences the predictability at small forecasting distances.

1976 ◽  
Vol 1 (15) ◽  
pp. 46
Author(s):  
Mohamed S. Nasser ◽  
John A. McCorquodale

A one-dimensional finite difference model is developed to simulate the action of long non-linear shallow water waves at a solid barrier. A damping parameter is introduced to account for the centrifugal effects in the incident wave. A stability criterion for At/Ax is suggested. The numerical predictions of reflection and run-up compare satisfactorily with experimental results.


2004 ◽  
Vol 61 (7-12) ◽  
pp. 1055-1071
Author(s):  
N. N. Gerasimova ◽  
V. G. Sinitsin ◽  
Yu. M. Yampolski

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Marin Marin ◽  
M. M. Bhatti

AbstractThe present study deals with the head-on collision process between capillary–gravity solitary waves in a finite channel. The present mathematical modeling is based on Nwogu’s Boussinesq model. This model is suitable for both shallow and deep water waves. We have considered the surface tension effects. To examine the asymptotic behavior, we employed the Poincaré–Lighthill–Kuo method. The resulting series solutions are given up to third-order approximation. The physical features are discussed for wave speed, head-on collision profile, maximum run-up, distortion profile, the velocity at the bottom, and phase shift profile, etc. A comparison is also given as a particular case in our study. According to the results, it is noticed that the free parameter and the surface tension tend to decline the solitary-wave profile significantly. However, the maximum run-up amplitude was affected in great measure due to the surface tension and the free parameter.


2013 ◽  
Vol 194 (3) ◽  
pp. 1920-1940 ◽  
Author(s):  
B. N. Kuvshinov ◽  
T. J. H. Smit ◽  
X. H. Campman

Author(s):  
James Flinders ◽  
John D. Clemens

ABSTRACT:Most natural systems display non-linear dynamic behaviour. This should be true for magma mingling and mixing processes, which may be chaotic. The equations that most nearly represent how a chaotic natural system behaves are insoluble, so modelling involves linearisation. The difference between the solution of the linearised and ‘true’ equation is assumed to be small because the discarded terms are assumed to be unimportant. This may be very misleading because the importance of such terms is both unknown and unknowable. Linearised equations are generally poor descriptors of nature and are incapable of either predicting or retrodicting the evolution of most natural systems. Viewed in two dimensions, the mixing of two or more visually contrasting fluids produces patterns by folding and stretching. This increases the interfacial area and reduces striation thickness. This provides visual analogues of the deterministic chaos within a dynamic magma system, in which an enclave magma is mingling and mixing with a host magma. Here, two initially adjacent enclave blobs may be driven arbitrarily and exponentially far apart, while undergoing independent (and possibly dissimilar) changes in their composition. Examples are given of the wildly different morphologies, chemical characteristics and Nd isotope systematics of microgranitoid enclaves within individual felsic magmas, and it is concluded that these contrasts represent different stages in the temporal evolution of a complex magma system driven by nonlinear dynamics. If this is true, there are major implications for the interpretation of the parts played by enclaves in the genesis and evolution of granitoid magmas.


2021 ◽  
Vol 9 (7) ◽  
pp. 784
Author(s):  
Arnida Lailatul Latifah ◽  
Durra Handri ◽  
Ayu Shabrina ◽  
Henokh Hariyanto ◽  
E. van Groesen

This paper shows simulations of high waves over different bathymetries to collect statistical information, particularly kurtosis and crest exceedance, that quantifies the occurrence of exceptionally extreme waves. This knowledge is especially pertinent for the design and operation of marine structures, safe ship trafficking, and mooring strategies for ships near the coast. Taking advantage of the flexibility to perform numerical simulations with HAWASSI software, with the aim of investigating the physical and statistical properties for these cases, this paper investigates the change in wave statistics related to changes in depth, breaking and differences between long- and short-crested waves. Three different types of bathymetry are considered: run-up to the coast with slope 1/20, waves over a shoal, and deep open-water waves. Simulations show good agreement in the examined cases compared with the available experimental data and simulations. Then predictive simulations for cases with a higher significant wave height illustrate the changes that may occur during storm events.


Sign in / Sign up

Export Citation Format

Share Document