scholarly journals Supplementary material to "Foreshocks and Short-Term Hazard Assessment to Large Earthquakes using Complex Networks: the Case of the 2009 L'Aquila Earthquake"

Author(s):  
E. Daskalaki ◽  
K. Spiliotis ◽  
C. Siettos ◽  
G. Minadakis ◽  
G. A. Papadopoulos
2016 ◽  
Vol 23 (4) ◽  
pp. 241-256 ◽  
Author(s):  
Eleni Daskalaki ◽  
Konstantinos Spiliotis ◽  
Constantinos Siettos ◽  
Georgios Minadakis ◽  
Gerassimos A. Papadopoulos

Abstract. The monitoring of statistical network properties could be useful for the short-term hazard assessment of the occurrence of mainshocks in the presence of foreshocks. Using successive connections between events acquired from the earthquake catalog of the Istituto Nazionale di Geofisica e Vulcanologia (INGV) for the case of the L'Aquila (Italy) mainshock (Mw = 6.3) of 6 April 2009, we provide evidence that network measures, both global (average clustering coefficient, small-world index) and local (betweenness centrality) ones, could potentially be exploited for forecasting purposes both in time and space. Our results reveal statistically significant increases in the topological measures and a nucleation of the betweenness centrality around the location of the epicenter about 2 months before the mainshock. The results of the analysis are robust even when considering either large or off-centered the main event space windows.


2016 ◽  
Author(s):  
E. Daskalaki ◽  
K. Spiliotis ◽  
C. Siettos ◽  
G. Minadakis ◽  
G. A. Papadopoulos

Abstract. The monitoring of statistical network properties could be useful for the short-term hazard assessment of the occurrence of mainshocks in the presence of foreshocks. Using successive connections between events acquired from the earthquake catalogue of INGV for the case of the L'Aquila (Italy) mainshock (Mw = 6.3) of 6th April 2009, we provide evidence that network measures, both global (e.g. average clustering coefficient, small-world index) and local (betweenness centrality), could potentially be exploited for forecasting purposes both in time and space. Our results reveal statistically significant increases of the topological measures and a nucleation of the betweenness centrality around the location of the epicenter about two months before the mainshock. The results of the analysis are robust even when considering either large or off-centered the main event space-windows.


2021 ◽  
pp. jgs2020-016
Author(s):  
Stefano Mazzoli ◽  
Sergio Nardò ◽  
Alessandra Ascione ◽  
Valentino Di Donato ◽  
Carlo Terranova ◽  
...  

The millimetre accuracy of Synthetic Aperture Radar (SAR) measurements and related multi-temporal data analyses provide fundamental information on surface displacements caused by strong earthquakes. The multi-temporal analysis of SAR interferometry data allows for the geometry, kinematics and temporal behaviour of earthquake-generating faults to be better constrained, and is being acknowledged as a promising technique in the field of earthquake precursors. We used SAR data obtained by multi-temporal interferometric techniques such as Permanent Scatterers (PS) interferometry for the investigation of pre- to post-seismic ground displacements in the region struck by the Mw 6.3, 2009 L'Aquila earthquake. We analysed Europen Remote Sensing (ERS) and Envisat PS-datasets from ascending and descending orbits, and COSMO-SkyMed PS-datasets from descending orbit, collectively covering a > 20 year long time span. On a yearly scale, a reversal of motions that affected the hanging-wall and footwall blocks of the earthquake-generating fault is detected. In particular, the hanging-wall block is characterized by pre-seismic uplift – which we document as being independent of any hydrological control – and eastward horizontal motion for about six years, followed by subsidence and westward motion (starting six to eight months prior to the earthquake). We suggest that such a ground displacement pattern may represent an earthquake precursor signal.Supplementary material: Figures showing SAR satellites viewing geometry, examples of raw PS time series of obtained from ERS ascending and descending orbits and maps of LoS-oriented mean velocities obtained from PS datasets from the Envisat ascending and descending orbits and a Table reporting detailed numerical results of the performed statistical analysis are available at https://doi.org/10.6084/m9.figshare.c.5289357


2010 ◽  
Vol 37 (6) ◽  
pp. n/a-n/a ◽  
Author(s):  
Thomas van Stiphout ◽  
Stefan Wiemer ◽  
Warner Marzocchi

2013 ◽  
Vol 36 (9) ◽  
pp. 795-798 ◽  
Author(s):  
Paolo Giorgini ◽  
Rinaldo Striuli ◽  
Marco Petrarca ◽  
Luisa Petrazzi ◽  
Paolo Pasqualetti ◽  
...  

2021 ◽  
Author(s):  
Carolina Filizzola ◽  
Roberto Colonna ◽  
Alexander Eleftheriou ◽  
Nicola Genzano ◽  
Katsumi Hattori ◽  
...  

<p>In order to evaluate the potentiality of the parameter “RST-based satellite TIR anomalies” in relation with earthquake (M≥4) occurrence, in recent years we performed three long-term statistical correlation analyses on different seismically active areas, such as Greece (Eleftheriou et al., 2016), Italy (Genzano et al., 2020), and Japan (Genzano et al., 2021).</p><p>With this aim, by means of the RST (Robust Satellite Techniques; Tramutoli, 1998, 2007) approach we analysed ten-year time series of satellite images collected by the SEVIRI sensor (on board the MSG platforms) over Greece (2004-2013) and Italy (2004-2014), and by the JAMI and IMAGER sensors (on board the MTSAT satellites) over Japan (2005-2015).  By applying empirical spatial-temporal rules, which are established also taking account of the physical models up to now proposed to explain seismic TIR anomaly appearances, the performed long -term correlation analyses put in relief that a non-casual relation exists between satellite TIR anomalies and the occurrence of earthquakes.</p><p>At the same time, in the carried out studies we introduced and validated refinements and improvements to the RST approach, which are able to minimize the proliferation of the false positives (i.e. TIR anomalies independent from the seismic sources, but due to other causes such as meteorological factors).    </p><p>Here, we summarize the achieved results and discuss them from the perspective of a multi-parameter system, which could improve our present knowledge on the earthquake-related processes and increase our capacity to assess the seismic hazard in the medium-short term (months to days).</p><p> </p><p>References</p><p>Eleftheriou, A., C. Filizzola, N. Genzano, T. Lacava, M. Lisi, R. Paciello, N. Pergola, F. Vallianatos, and V. Tramutoli (2016), Long-Term RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Greece in the Period 2004–2013, Pure Appl. Geophys., 173(1), 285–303, doi:10.1007/s00024-015-1116-8.</p><p>Genzano, N., C. Filizzola, M. Lisi, N. Pergola, and V. Tramutoli (2020), Toward the development of a multi parametric system for a short-term assessment of the seismic hazard in Italy, Ann. Geophys, 63, 5, PA550, doi:10.4401/ag-8227.</p><p>Genzano, N., C. Filizzola, K. Hattori, N. Pergola, and V. Tramutoli (2021), Statistical correlation analysis between thermal infrared anomalies observed from MTSATs and large earthquakes occurred in Japan (2005 - 2015), Journal of Geophysics Research – Solid Earth, doi: 10.1029/2020JB020108 (accepted).</p><p>Tramutoli, V. (1998), Robust AVHRR Techniques (RAT) for Environmental Monitoring: theory and applications, in Proceedings of SPIE, vol. 3496, edited by E. Zilioli, pp. 101–113, doi: 10.1117/12.332714</p><p>Tramutoli, V. (2007), Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and Mitigation: Theory and Applications, in 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, pp. 1–6, IEEE. doi: 10.1109/MULTITEMP.2007.4293057</p>


2015 ◽  
Vol 58 (2) ◽  
Author(s):  
Manuela Volpe ◽  
Simone Atzori ◽  
Antonio Piersanti ◽  
Daniele Melini

<p>We present a Finite Element inverse analysis of the static deformation field for the M<sub>w</sub>= 6.3, 2009 L’Aquila earthquake, in order to infer the rupture slip distribution on the fault plane. An univocal solution for the rupture slip distribution has not been reached yet with negative impact for reliable hazard scenarios in a densely populated area. In this study, Finite Element computed Green’s functions were implemented in a linear joint inversion scheme of geodetic (GPS and InSAR) and seismological (strong motion) coseismic deformation data. In order to fully exploit the informative power of our dense dataset and to honor the complexities of the real Earth, we implemented an optimized source model, represented by a fault plane subdivided in variable size patches, embedded in a high-resolution realistic three-dimensional model of the Apenninic seismo-tectonic setting, accounting for topographic reliefs and rheological heterogeneities deduced from local tomography. We infer that the investigated inversion domain contains two minima configurations in the solution space, i.e. a single- and a double-patch slip distribution, which are almost equivalent, so that the available datasets and numerical models are not able to univocally discriminate between them. Nevertheless our findings suggest that a two high-slip patch pattern is slightly favoured.</p>


Sign in / Sign up

Export Citation Format

Share Document