scholarly journals Data assimilation as a deep learning tool to infer ODE representations of dynamical models

2019 ◽  
Author(s):  
Marc Bocquet ◽  
Julien Brajard ◽  
Alberto Carrassi ◽  
Laurent Bertino

Abstract. Recent progress in machine learning has shown how to forecast and, to some extent, learn the dynamics of a model from its output, resorting in particular to neural networks and deep learning techniques. We will show how the same goal can be directly achieved using data assimilation techniques without leveraging on machine learning software libraries, with a view to high-dimensional models. The dynamics of a model are learned from its observation and an ordinary differential equation (ODE) representation of this model is inferred using a recursive nonlinear regression. Because the method is embedded in a Bayesian data assimilation framework, it can learn from partial and noisy observations of a state trajectory of the physical model. Moreover, a space-wise local representation of the ODE system is introduced and is key to cope with high-dimensional models. It has recently been suggested that neural network architectures could be interpreted as dynamical systems. Reciprocally, we show that our ODE representations are reminiscent of deep learning architectures. Furthermore, numerical analysis considerations on stability shed light on the assets and limitations of the method. The method is illustrated on several chaotic discrete and continuous models of various dimensions, with or without noisy observations, with the goal to identify or improve the model dynamics, build a surrogate or reduced model, or produce forecasts from mere observations of the physical model.

2019 ◽  
Vol 26 (3) ◽  
pp. 143-162 ◽  
Author(s):  
Marc Bocquet ◽  
Julien Brajard ◽  
Alberto Carrassi ◽  
Laurent Bertino

Abstract. Recent progress in machine learning has shown how to forecast and, to some extent, learn the dynamics of a model from its output, resorting in particular to neural networks and deep learning techniques. We will show how the same goal can be directly achieved using data assimilation techniques without leveraging on machine learning software libraries, with a view to high-dimensional models. The dynamics of a model are learned from its observation and an ordinary differential equation (ODE) representation of this model is inferred using a recursive nonlinear regression. Because the method is embedded in a Bayesian data assimilation framework, it can learn from partial and noisy observations of a state trajectory of the physical model. Moreover, a space-wise local representation of the ODE system is introduced and is key to coping with high-dimensional models. It has recently been suggested that neural network architectures could be interpreted as dynamical systems. Reciprocally, we show that our ODE representations are reminiscent of deep learning architectures. Furthermore, numerical analysis considerations of stability shed light on the assets and limitations of the method. The method is illustrated on several chaotic discrete and continuous models of various dimensions, with or without noisy observations, with the goal of identifying or improving the model dynamics, building a surrogate or reduced model, or producing forecasts solely from observations of the physical model.


Author(s):  
Amit Kumar Tyagi ◽  
G. Rekha

Due to development in technology, millions of devices (internet of things: IoTs) are generating a large amount of data (which is called as big data). This data is required for analysis processes or analytics tools or techniques. In the past several decades, a lot of research has been using data mining, machine learning, and deep learning techniques. Here, machine learning is a subset of artificial intelligence and deep learning is a subset of machine leaning. Deep learning is more efficient than machine learning technique (in terms of providing result accurate) because in this, it uses perceptron and neuron or back propagation method (i.e., in these techniques, solve a problem by learning by itself [with being programmed by a human being]). In several applications like healthcare, retails, etc. (or any real-world problems), deep learning is used. But, using deep learning techniques in such applications creates several problems and raises several critical issues and challenges, which are need to be overcome to determine accurate results.


Vibration ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 341-356
Author(s):  
Jessada Sresakoolchai ◽  
Sakdirat Kaewunruen

Various techniques have been developed to detect railway defects. One of the popular techniques is machine learning. This unprecedented study applies deep learning, which is a branch of machine learning techniques, to detect and evaluate the severity of rail combined defects. The combined defects in the study are settlement and dipped joint. Features used to detect and evaluate the severity of combined defects are axle box accelerations simulated using a verified rolling stock dynamic behavior simulation called D-Track. A total of 1650 simulations are run to generate numerical data. Deep learning techniques used in the study are deep neural network (DNN), convolutional neural network (CNN), and recurrent neural network (RNN). Simulated data are used in two ways: simplified data and raw data. Simplified data are used to develop the DNN model, while raw data are used to develop the CNN and RNN model. For simplified data, features are extracted from raw data, which are the weight of rolling stock, the speed of rolling stock, and three peak and bottom accelerations from two wheels of rolling stock. In total, there are 14 features used as simplified data for developing the DNN model. For raw data, time-domain accelerations are used directly to develop the CNN and RNN models without processing and data extraction. Hyperparameter tuning is performed to ensure that the performance of each model is optimized. Grid search is used for performing hyperparameter tuning. To detect the combined defects, the study proposes two approaches. The first approach uses one model to detect settlement and dipped joint, and the second approach uses two models to detect settlement and dipped joint separately. The results show that the CNN models of both approaches provide the same accuracy of 99%, so one model is good enough to detect settlement and dipped joint. To evaluate the severity of the combined defects, the study applies classification and regression concepts. Classification is used to evaluate the severity by categorizing defects into light, medium, and severe classes, and regression is used to estimate the size of defects. From the study, the CNN model is suitable for evaluating dipped joint severity with an accuracy of 84% and mean absolute error (MAE) of 1.25 mm, and the RNN model is suitable for evaluating settlement severity with an accuracy of 99% and mean absolute error (MAE) of 1.58 mm.


IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 33704-33755
Author(s):  
Alessandro Davoli ◽  
Giorgio Guerzoni ◽  
Giorgio M. Vitetta

Sign in / Sign up

Export Citation Format

Share Document