scholarly journals The impact of meltwater discharge from the Greenland ice sheet on the Atlantic nutrient supply to the northwest European shelf

Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 167-193
Author(s):  
Moritz Mathis ◽  
Uwe Mikolajewicz

Abstract. Projected future shoaling of the wintertime mixed layer in the northeast (NE) Atlantic has been shown to induce a regime shift in the main nutrient supply pathway from the Atlantic to the northwest European shelf (NWES) near the end of the 21st century. While reduced winter convection leads to a substantial decrease in the vertical nutrient supply and biological productivity in the open ocean, vertical mixing processes at the shelf break maintain a connection to the subpycnocline nutrient pool and thus productivity on the shelf. Here, we investigate how meltwater discharge from the Greenland ice sheet (GIS), not yet taken into account, impacts the mixed layer shoaling and the regime shift in terms of spatial distribution and temporal variability. To this end, we have downscaled sensitivity experiments by a global Earth system model for various GIS melting rates with a regionally coupled ocean–atmosphere climate system model. The model results indicate that increasing GIS meltwater discharge leads to a general intensification of the regime shift. Atlantic subpycnocline water masses mixed up at the shelf break become richer in nutrients and thus further limit the projected nutrient decline on the shelf. Moreover, the stronger vertical nutrient gradient through the pycnocline results in an enhanced interannual variability of on-shelf nutrient fluxes which, however, do not significantly increase variations in nutrient concentrations and primary production on the shelf. Due to the impact of the GIS meltwater discharge on the NE Atlantic mixed layer depth, the regime shift becomes initiated earlier in the century. The effect on the onset timing, though, is found to be strongly damped by the weakening of the Atlantic meridional overturning circulation. A GIS melting rate that is even 10 times higher than expected for emission scenario Representative Concentration Pathway (RCP) 8.5 would not lead to an onset of the regime shift until the 2070s.

2019 ◽  
Author(s):  
Moritz Mathis ◽  
Uwe Mikolajewicz

Abstract. Projected future shoaling of the wintertime mixed layer in the Northeast (NE) Atlantic has been shown to induce a regime shift in the main nutrient supply pathway from the Atlantic to the Northwest European Shelf (NWES) near the end of the 21st century. While reduced winter convection leads to a substantial decrease in the vertical nutrient supply and biological productivity in the open ocean, vertical mixing processes at the shelf break maintain a connection to the subpycnocline nutrient pool and thus productivity on the shelf. Here we investigate how meltwater discharge from the Greenland ice sheet (GIS) not yet taken into account impacts the mixed layer shoaling and the regime shift in terms of spatial distribution and temporal variability. To this end we have downscaled sensitivity experiments by a global earth system model for various GIS melting rates with a regionally coupled ocean-atmosphere climate system model. The model results indicate that increasing GIS meltwater discharge leads to a general intensification of the regime shift. Atlantic subpycnocline water masses mixed up at the shelf break become richer in nutrients and thus limit the projected nutrient decline on the shelf. Moreover, the stronger vertical nutrient gradient through the pycnocline results in an enhanced interannual variability of on-shelf nutrient fluxes which, however, do not significantly increase variations in nutrient concentrations and primary production on the shelf. Moreover, due to the impact of the GIS meltwater discharge on the NE Atlantic mixed layer depth, the regime shift becomes initiated earlier in the century by about 1–2 decades, depending on the discharge rate. The effect on the onset timing, though, is found to be strongly damped by the weakening of the Atlantic meridional overturning circulation. A GIS melting rate that is even 10 times higher than expected for emission scenario RCP8.5 would lead to an onset of the regime shift not until the 2070s.


2019 ◽  
Author(s):  
Raymond Sellevold ◽  
Leonardus van Kampenhout ◽  
Jan T. M. Lenaerts ◽  
Brice Noël ◽  
William H. Lipscomb ◽  
...  

Abstract. The modeling of ice sheets in Earth System Models (ESMs) is an active area of research with applications to future sea level rise projections and paleoclimate studies. A major challenge for the surface mass balance (SMB) modeling with ESMs arises from their coarse resolution. This paper evaluates the elevation classes (EC) method as an SMB downscaling alternative to the dynamical downscaling of regional climate models. To this end, we compare EC-simulated elevation dependent surface energy and mass balance gradients from the Community Earth System Model 1.0 (CESM1.0) with those from RACMO2.3. The EC implementation in CESM1.0 combines prognostic snow albedo, a multi-layer snow model, and elevation corrections for two atmospheric forcing variables: temperature and humidity. Despite making no corrections for incoming radiation and precipitation, we find that the EC method in CESM1.0 yields similar SMB gradients as RACMO2.3, in part due to compensating biases in snowfall, surface melt and refreezing gradients. We discuss the sensitivity of the results to the lapse rate used for the temperature correction. We also evaluate the impact of the EC method on the climate simulated by the ESM and find minor cooling over the Greenland ice sheet and Barents and Greenland Seas, which corrects a warm bias in the ESM due to topographic smoothing. Based on our diagnostic procedure to evaluate the EC method, we make several recommendations for future implementations.


2018 ◽  
Author(s):  
Huw W. Lewis ◽  
Juan Manuel Castillo Sanchez ◽  
John Siddorn ◽  
Robert R. King ◽  
Marina Tonani ◽  
...  

Abstract. Operational ocean forecasts are typically produced by modelling systems run using a forced mode approach. The evolution of the ocean state is not directly influenced by surface waves, and the ocean dynamics are driven by an external source of meteorological data which is independent of the ocean state. Model coupling provides one approach to increase the extent to which ocean forecast systems can represent the interactions and feedbacks between ocean, waves and the atmosphere seen in nature. This paper demonstrates the impact of improving how the effect of waves on the momentum exchange across the ocean-atmosphere interface is represented through ocean-wave coupling on the performance of an operational regional ocean prediction system. This study focuses on the eddy-resolving (1.5 km resolution) Atlantic Margin Model (AMM15) ocean model configuration for the North-West European Shelf (NWS) region. A series of two-year duration forecast trials of the Copernicus Marine Environment Monitoring Service (CMEMS) North-West Shelf regional ocean prediction system are analysed. The impact of including ocean-wave feedbacks via dynamic coupling on the simulated ocean is discussed. The main interactions included are the modification of surface stress by wave growth and dissipation, Stokes–Coriolis forcing and wave height dependent ocean surface roughness. Given the relevance to operational forecasting, trials with and without ocean data assimilation are considered. Summary forecast metrics demonstrate that the ocean-wave coupled system is a viable evolution for future operational implementation. When results are considered in more depth, wave coupling was found to result in an annual cycle of relatively warmer winter and cooler summer sea surface temperatures for seasonally stratified regions of the NWS. This is driven by enhanced mixing due to waves, and a deepening of the ocean mixed layer during summer. The impact of wave coupling is shown to be reduced within the mixed layer with assimilation of ocean observations. Evaluation of salinity and ocean currents against profile measurements in the German Bight demonstrates improved simulation with wave coupling relative to control simulations. Further, evidence is provided of improvement to simulation of extremes of sea surface height anomalies relative to coastal tide gauges.


The various contributions to the Discussion Meeting are related to general aspects of the subject, and some topics requiring further investigation are identified. These include the evolution and stability of fronts, and the processes by which cross-frontal and cross-shelf mixing take place. The relation of physical processes to the growth of phytoplankton in the vicinity of fronts needs further study. Among points relating particularly to the northwest European shelf seas are the influence of the oceanic flow at the shelf edge and the nature of the band of cold water, with its zone of enhanced biological activity, that occurs over the Celtic Sea shelf break in summer.


2018 ◽  
Author(s):  
Joshua K. Cuzzone ◽  
Nicole-Jeanne Schlegel ◽  
Mathieu Morlighem ◽  
Eric Larour ◽  
Jason P. Briner ◽  
...  

Abstract. Geologic archives constraining the variability of the Greenland Ice Sheet (GrIS) during the Holocene provide targets for ice sheet models to test sensitivities to variations in past climate and model formulation. Even as data-model comparisons are becoming more common, many models simulating the behaviour of the GrIS during the past rely on meshes with coarse horizontal resolution (≥ 10 km). In this study, we explore the impact of model resolution on the simulated nature of retreat across Southwestern Greenland during the Holocene. Four simulations are performed using the Ice Sheet System Model (ISSM); three which use a uniform mesh and horizontal mesh resolutions of 20 km, 10 km, and 5 km and one non-uniform mesh with resolution ranging from 2 km to 15 km. We find that the simulated retreat can vary significantly between models with different horizontal resolutions based on how well the bed topography is resolved. In areas of low topographic relief, model resolution plays a negligible role in simulated differences in retreat, with models instead responding similarly to surface mass balance (SMB) driven retreat. Conversely, in areas where the bed topography is complex and high in relief, such as fjords, lower resolution models (10 km and 20 km) simulate unrealistic retreat driven as ice-surface lowering intersects bumps in the bed topography which would otherwise be resolved as troughs in the higher resolution models. Our results highlight the important role that high resolution grids play in simulating retreat in areas of complex bed topography, but also suggest that models using non-uniform grids can save computational resources through coarsening the mesh in areas of non-complex bed topography where the SMB drives retreat. Additionally, these results emphasize that care must be taken with ice sheet models when tuning model parameters to match reconstructed margins, particularly for lower resolution models in regions where complex bed topography is poorly resolved.


2019 ◽  
Vol 13 (3) ◽  
pp. 879-893 ◽  
Author(s):  
Joshua K. Cuzzone ◽  
Nicole-Jeanne Schlegel ◽  
Mathieu Morlighem ◽  
Eric Larour ◽  
Jason P. Briner ◽  
...  

Abstract. Geologic archives constraining the variability of the Greenland ice sheet (GrIS) during the Holocene provide targets for ice sheet models to test sensitivities to variations in past climate and model formulation. Even as data–model comparisons are becoming more common, many models simulating the behavior of the GrIS during the past rely on meshes with coarse horizontal resolutions (≥10 km). In this study, we explore the impact of model resolution on the simulated nature of retreat across southwestern Greenland during the Holocene. Four simulations are performed using the Ice Sheet System Model (ISSM): three that use a uniform mesh and horizontal mesh resolutions of 20, 10, and 5 km, and one that uses a nonuniform mesh with a resolution ranging from 2 to 15 km. We find that the simulated retreat can vary significantly between models with different horizontal resolutions based on how well the bed topography is resolved. In areas of low topographic relief, the horizontal resolution plays a negligible role in simulated differences in retreat, with each model instead responding similarly to retreat driven by surface mass balance (SMB). Conversely, in areas where the bed topography is complex and high in relief, such as fjords, the lower-resolution models (10 and 20 km) simulate unrealistic retreat that occurs as ice surface lowering intersects bumps in the bed topography that would otherwise be resolved as troughs using the higher-resolution grids. Our results highlight the important role that high-resolution grids play in simulating retreat in areas of complex bed topography, but also suggest that models using nonuniform grids can save computational resources through coarsening the mesh in areas of noncomplex bed topography where the SMB predominantly drives retreat. Additionally, these results emphasize that care must be taken with ice sheet models when tuning model parameters to match reconstructed margins, particularly for lower-resolution models in regions where complex bed topography is poorly resolved.


Sign in / Sign up

Export Citation Format

Share Document