scholarly journals Sub-basin scale sea level budgets from satellite altimetry, Argo floats and satellite gravimetry in the North Atlantic

2016 ◽  
Author(s):  
Marcel Kleinherenbrink ◽  
Riccardo Riva ◽  
Yu Sun

Abstract. In this study for the first time an attempt is made to close the sea level budget on a sub-basin scale in terms of trend, annual amplitude and residual time series, after removing the trend, the semi-annual and annual signals. To obtain errors for altimetry and Argo full variance-covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry we apply a geographically dependent intermission bias (Ablain et al., 2015), which leads to differences in trends up to 0.8 mm yr−1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE) gravity fields full variance-covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference the standard 96-degree DDK5-filtered CSR solution is used to compute OBP. A comparison is made with two anistropic Wiener-filtered CSR solutions up to d/o 60 and 96 and a Wiener-filtered 90-degree ITSG solution. Budgets are computed for ten polygons in the North Atlantic, defined in a way that the error on the trend of Ocean Bottom Pressure (OBP) + steric sea level remains within 1 mm yr−1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in nine-out-of-ten sub-basins in terms of trend. Wiener-filtered ITSG and the standard DDK5-filtered CSR solutions also close the trend budget, if a Glacial Isostatic Adjustment (GIA) correction error of 10–20 % is applied, however the performance of the DDK5-filtered solution strongly depends on the orientation of the polygon due to residual striping. In seven-out-of-ten sub-basins the budget of the annual cycle is closed, using the DDK5-filtered CSR or the Wiener-filtered ITSG solutions.The Wiener-filtered 60- and 96-degree CSR solution in combination with Argo lack amplitude and suffer from what appears to be hydrological leakage in the Amazon and Sahel regions. After reducing the trend, semi-annual and annual signals, 24–53 % of the residual variance in altimetry-derived sea level time series is explained by the combination of Argo steric sea levels and Wiener-filtered ITSG OBP.Based on this, we believe that the best overall solution for the OBP component of the sub-basin scale budgets is the Wiener-filtered ITSG gravity fields. The interannual variability is primarily a steric signal in the North Atlantic, so for this the choice of filter and gravity field solution is not really significant.

Ocean Science ◽  
2016 ◽  
Vol 12 (6) ◽  
pp. 1179-1203 ◽  
Author(s):  
Marcel Kleinherenbrink ◽  
Riccardo Riva ◽  
Yu Sun

Abstract. In this study, for the first time, an attempt is made to close the sea level budget on a sub-basin scale in terms of trend and amplitude of the annual cycle. We also compare the residual time series after removing the trend, the semiannual and the annual signals. To obtain errors for altimetry and Argo, full variance–covariance matrices are computed using correlation functions and their errors are fully propagated. For altimetry, we apply a geographically dependent intermission bias [Ablain et al.(2015)], which leads to differences in trends up to 0.8 mm yr−1. Since Argo float measurements are non-homogeneously spaced, steric sea levels are first objectively interpolated onto a grid before averaging. For the Gravity Recovery And Climate Experiment (GRACE), gravity fields full variance–covariance matrices are used to propagate errors and statistically filter the gravity fields. We use four different filtered gravity field solutions and determine which post-processing strategy is best for budget closure. As a reference, the standard 96 degree Dense Decorrelation Kernel-5 (DDK5)-filtered Center for Space Research (CSR) solution is used to compute the mass component (MC). A comparison is made with two anisotropic Wiener-filtered CSR solutions up to degree and order 60 and 96 and a Wiener-filtered 90 degree ITSG solution. Budgets are computed for 10 polygons in the North Atlantic Ocean, defined in a way that the error on the trend of the MC plus steric sea level remains within 1 mm yr−1. Using the anisotropic Wiener filter on CSR gravity fields expanded up to spherical harmonic degree 96, it is possible to close the sea level budget in 9 of 10 sub-basins in terms of trend. Wiener-filtered Institute of Theoretical geodesy and Satellite Geodesy (ITSG) and the standard DDK5-filtered CSR solutions also close the trend budget if a glacial isostatic adjustment (GIA) correction error of 10–20 % is applied; however, the performance of the DDK5-filtered solution strongly depends on the orientation of the polygon due to residual striping. In 7 of 10 sub-basins, the budget of the annual cycle is closed, using the DDK5-filtered CSR or the Wiener-filtered ITSG solutions. The Wiener-filtered 60 and 96 degree CSR solutions, in combination with Argo, lack amplitude and suffer from what appears to be hydrological leakage in the Amazon and Sahel regions. After reducing the trend, the semiannual and the annual signals, 24–53 % of the residual variance in altimetry-derived sea level time series is explained by the combination of Argo steric sea levels and the Wiener-filtered ITSG MC. Based on this, we believe that the best overall solution for the MC of the sub-basin-scale budgets is the Wiener-filtered ITSG gravity fields. The interannual variability is primarily a steric signal in the North Atlantic Ocean, so for this the choice of filter and gravity field solution is not really significant.


2017 ◽  
Vol 30 (6) ◽  
pp. 2029-2054 ◽  
Author(s):  
Shane Elipot ◽  
Eleanor Frajka-Williams ◽  
Chris W. Hughes ◽  
Sofia Olhede ◽  
Matthias Lankhorst

Abstract The response of the North Atlantic meridional overturning circulation (MOC) to wind stress forcing is investigated from an observational standpoint, using four time series of overturning transports below and relative to 1000 m, overlapping by 3.6 yr. These time series are derived from four mooring arrays located on the western boundary of the North Atlantic: the RAPID Western Atlantic Variability Experiment (WAVE) array (42.5°N), the Woods Hole Oceanographic Institution Line W array (39°N), RAPID–MOC/MOCHA (26.5°N), and the Meridional Overturning Variability Experiment (MOVE) array (16°N). Using modal decompositions of the analytic cross-correlation between transports and wind stress, the basin-scale wind stress is shown to significantly drive the MOC coherently at four latitudes, on the time scales available for this study. The dominant mode of covariance is interpreted as rapid barotropic oceanic adjustments to wind stress forcing, eventually forming two counterrotating Ekman overturning cells centered on the tropics and subtropical gyre. A second mode of covariance appears related to patterns of wind stress and wind stress curl associated with the North Atlantic Oscillation, spinning anomalous horizontal circulations that likely interact with topography to form overturning cells.


Author(s):  
N. Penny Holliday ◽  
Stephanie Henson

The growth, distribution, and variability of phytoplankton populations in the North Atlantic are primarily controlled by the physical environment. This chapter provides an overview of the regional circulation of the North Atlantic, and an introduction to the key physical features and processes that affect ecosystems, and especially plankton, via the availability of light and nutrients. There is a natural seasonal cycle in primary production driven by physical processes that determine the light and nutrient levels, but the pattern has strong regional variations. The variations are determined by persistent features on the basin scale (e.g. the main currents and mixed layer regimes of the subtropical and subpolar gyres), as well as transient mesoscale features such as eddies and meanders of fronts.


2021 ◽  
pp. 1
Author(s):  
Xiaolin Liu ◽  
Jianhua Lu ◽  
Yimin Liu ◽  
Guoxiong Wu

AbstractWintertime precipitation is vital to the growth of glaciers in the northern hemisphere. We find a tripole mode of precipitation (PTM), with each pole of the mode extending zonally over the eastern hemisphere roughly between 30°W and 120°E, and the positive/negative/positive structure for its positive phase extending meridionally from the Arctic to the continental North Africa–Eurasia. The large-scale dynamics associated with the PTM is explored. The positive phase of the PTM is associated with the negative while eastward-shifted phase of the North Atlantic Oscillation (NAO) and a zonal band of positive SST anomaly in the tropics, together with a narrowed Hadley cell and weakened Ferrel cell. While being north-eastward tilted and separated from their North Africa-Eurasia counterpart in the climatological mean, the upper-tropospheric westerly jets over the east Pacific and north Atlantic become extending zonally and shifting southward and hence form a circumpolar subtropical jet as a whole by connecting with the westerly jets over the North Africa-Eurasia. The enhanced zonal winds over the north Atlantic promote more synoptic-scale transient eddies which are waveguided by the jet streams. The polar vortex weakens and cold air dips southward from the North Pole. Further diagnosis of the E-vectors suggests that transient eddies have a positive feedback on the weakening of Ferrel cell. Opposite features are associated with the negative phase of the PTM. The reconstructed time series using multiple linear regression on the NAO index and the tropical SST averaged over 20°S– 20°N, can explain 62.4% of the variance of the original the original precipitation time series.


Sign in / Sign up

Export Citation Format

Share Document